
COMP 1633: Intro to CS II

Copying Objects
And a bit of inheritance

Charlotte Curtis
April 3, 2024

Where we left off

Thinking recursively

Recursion with linked lists

Tail recursion

Some more examples with recursion

Textbook Chapter 14

void hanoi(int n, int src,
 int dest, int spare) {
 if (n == 1) {
 cout << "Move disk from " << src
 << " to " << dest << endl;
 } else {
 hanoi(n-1, src, spare, dest);
 hanoi(1, src, dest, spare);
 hanoi(n-1, spare, dest, src);
 }
}

1

Today's topics
Back to classes! Last day of new stuff

Copying objects

Copy constructors

Overloading the assignment operator

Touch on inheritance, if we have time

Textbook Section 11.4

2

Copying objects
In assignment 4, you can treat a Team just like a built-in type

This means you can do things like:

Team t1;
source >> t1;
Team t2 = t1;

Or have a function that returns a copy of an Team :

Team copy_of_first() {
 return head->team;
}

But what does it mean to copy an object?

3

Default copying
Copying occurs whenever you:

i. Assign an object to another instance

ii. Pass an object to a function by value

iii. Return an object from a function by value

iv. Initialize an object with another instance

With the exception of case i, these all involve creating a new object (we'll come
back to case i later)

C++ provides a default copy constructor to handle this

4

Case iv: Initializing an object
With primitives, it makes sense to do the following:

int x = 5; // allocate an int with value 5
int y = x; // allocate another int with value 5

This works for objects too:

Team t1; // allocate an Team with default values
Team t2 = t1; // allocate another Team with the same values

The compiler will use the copy constructor to initialize t2 , equivalent to:

Team t2(t1); // instantiate an Team with the same values as t1

Just like the default constructor, a default copy constructor is provided

5

Default copy constructor

The default copy constructor does a shallow copy, where the value of each

member variable is copied

If the member is a statically allocated array, the array is copied element by
element (the behaviour described way back in lecture 10)

Let's draw a diagram of the following copy operations:

struct Foo {
 int var1;
 double var2;
 char var3[4];
};

Foo f1 = {1, 2, "hi"};
Foo f2 = f1;

6

file:///lecture/10-structures/#structures-with-array-fields

Copying pointer members
What if the member variable is a pointer, such as the head of a linked list?

class StringStack {
public:
...
private:
 struct Node {
 std::string data;
 Node *next;
 };
 Node *head;
};

Just like other data types, the value
of the pointer is copied

This means that the copy will point to

the same Node as the original

What if we pass StringStack

objects by value?

7

Passing objects by value
Recall: passing an object by value creates a local copy in the function

When the function finishes, the local copy is destroyed

void addstuff(StringStack s, std::string stuff) {
 s.push(stuff);
}

Let's trace what happens when we call addstuff with a StringStack

Main takeaway: shallow copy is not enough for dynamically allocated data

8

Overriding the default copy constructor
To enable a deep copy, we need to override the default copy constructor

Overload: same function name, different signature

Override: same function name, same signature, replaces previous

The copy constructor has one parameter: a reference to another instance

class StringStack {
public:
 StringStack(); // parameterless constructor
 ~StringStack(); // destructor
 StringStack(const StringStack &other); // copy constructor
};

Why does the parameter need to be a reference?
9

Implementing the copy constructor
The copy constructor is just like any other function, BUT:

it cannot call any methods that take or return an object by value

This includes the assignment operator for the class

Since the copy constructor is called automatically in these scenarios, we would

end up with infinite recursion

The copy constructor must be written from scratch

10

A copy constructor for StringStack

StringStack::StringStack(const StringStack &other) {
 head = NULL;

 // copy the contents of other
 Node *curr = other.head;
 while (curr) {
 push(curr->data);
 curr = curr->next;
 }
}

Note: we can call push because it doesn't copy a StringStack

11

Overriding the assignment operator
Remember the 4 cases where copying occurs?

Case i is assignment:

StringStack s1;
StringStack s2;
s1 = s2; // not the same as all in one line!

The copy constructor is not called because s2 already exists

Anyone using this class would expect the assignment operator to behave like the

copy constructor (i.e. deep copy)

Good thing we know how to override operators

12

Overriding the assignment operator
Almost the same as the copy constructor, but:

any existing data in the object must be destroyed first

the return type must be a reference to the object

The reference requirement is to allow for assignment chaining:

int x, y, z;
x = y = z = 5; // this is legal!

Finally, we need to consider the possible (legal, but weird) case:

StringStack s1;
... // do stuff with s1
s1 = s1; // self-assignment

13

Implementing the assignment operator

StringStack& StringStack::operator = (const StringStack &other) {
 if (this == &other) // check for self-assignment
 return *this;

 while (!empty()) // destroy existing data
 pop();

 Node *curr = other.head; // copy the contents of other
 while (curr) {
 push(curr->data);
 curr = curr->next;
 }

 return *this;
}

14

Side tangent: avoiding code duplication
The copy constructor and assignment operator are very similar

It can be tempting to just call one from the other, i.e.:

StringStack::StringStack(const StringStack &other) {
 *this = other;
}

This is a bad idea because = only works on existing objects

Instead, we can extract the common code into a private helper function and call

it from both, e.g. void copy_elements(const StringStack &other);

15

The Rule of Three or "The Big Three"
Classes with dynamically allocated data should always have:

1. A destructor to free the memory

2. A copy constructor to make a deep copy

3. An assignment operator to make a deep copy

If you need to write one of these, you probably need to write all three. That
said, copy constructors and assignment operators are not required for
assignment 4.

16

 Copying check-in 1/2
Which of the following is not a case where the copy constructor is called?

A. Passing an object to a function by value

B. Returning an object from a function by value

C. Initializing an object with another instance

D. Allocating an object dynamically with new

E. None of the above, they all call the copy constructor

17

 Copying check-in 2/2
When dealing with classes with dynamically allocated members, the default copy

constructor might:

A. Cause a dangling pointer to be created

B. Cause a memory leak to occur

C. Cause a segmentation fault to occur

D. All of the above

E. None of the above

18

Animal

double age_years
string name
char gender

speak()

Duck

string beak_colour
bool is_rubber

swim()
fly()

Cat

string fur_colour

stalk()
pounce()

Lion

bool is_king

roar()

A (very brief) intro to
Inheritance

Classes are a great way to provide
abstraction and encapsulation

But there's a lot of repetition in the code
we write

Inheritance allows us to reuse code from

other (similar) classes

19

Inheritance
AKA creating a new class from an existing one

Inheritance is an "is-a" relationship
A Duck is an Animal

A Cat is an Animal

A Lion is a Cat

The new class is called a subclass, derived class, or child class

The existing class is called a superclass, base class, or parent class

The derived class inherits all the members of the base class

20

What gets inherited?
The derived class gets all the members of the base class except the constructor,

destructor, copy constructor, and assignment operator
A Cat has private members age_years , name , and gender

A Lion can stalk() and pounce() , but also roar()

All Animal s can speak() , but what does that mean?

A derived class can override a member of the base class

We can redefine Cat::speak() to make it more specific

21

private members are still private
Derived classes inherit all members of the base class; a cat has a name

However, this throws a compiler error!

std::string Cat::speak() {
 return name + " says meow";
}

The private members of the base class are not accessible

This is to prevent breaking encapsulation - if this were allowed, someone else

could inherit your class and start messing with the private members

22

Inheritance: main takeaway
There is a whole lot more nuance to inheritance and no more time in this class

There won't be more on the final than maybe a multiple choice question about
"what is inheritance" or "why is inheritance useful"

Inheritance allows us to extend the functionality of a class without having to rewrite

all the code

Next semester you'll be working in Java, which is completely object-oriented and

uses inheritance extensively (but some nuance is different from C++)

23

Coming up next
Assignment 4 is due on Monday!

Lab tomorrow: copying

Last lecture: exam discussion, practice coding on paper, spotting errors, drawing
memory diagrams, and any other topics of interest

And that's all for new content!

24

