## COMP 1633: Intro to CS II

# Recursion

Charlotte Curtis March 27, 2024

#### Where we left off

- friend functions and stream operators
- A common abstract data type: stacks
- Designing a SetInt ADT

Textbook Sections 11.2, 13.2

```
class StringStack {
public:
....
private:
   struct Node {
      std::string data;
      Node *next;
   };
   Node *head;
   int capacity;
   int size;
};
```

#### **Today's topics**

- Something completely different: **Recursion!**
- Note: due to Easter, I had to remove another example of an ADT from the schedule, but I've posted the content if you'd like to read about queues

Textbook Section 13.2, Chapter 14

#### And now, recursion!

- Recursion is a programming technique that involves a function calling itself
- You may have seen a bit of this in COMP 1701, e.g.:

```
def get_valid_input(valid_choices: list) -> str:
    choice = input('Enter your choice: ')
    if choice not in valid_choices:
        print('Invalid choice!')
        choice = get_valid_input(valid_choices)
    return choice
```

• What is actually happening here???

#### The call stack

```
int f() {
    int x = g();
    return x;
}
int g() {
    int x = h();
    return x;
}
int h() ....
```

int main() {
 int result = f();
 return 0;
}

- Each function call adds a **stack frame** to the stack
- The stack frame contains the **local variables** of the function and the **return address** of the caller



## **Functions calling themselves**



```
int main() {
    int result = f();
    return 0;
}
```

- Each call adds an independent stack frame
- The local variables x do not interfere, and each call has a unique **return address**
- One big problem: it never ends!
- Let's see what happens on Python Tutor



#### **Definition of Recursion**



/rəˈkərZH(ə)n/

#### noun MATHEMATICS • LINGUISTICS

the repeated application of a recursive procedure or definition.

- a recursive definition.
   plural noun: recursions
- In programming, recursion involves a function calling itself repeatedly
- To be useful, it must stop at some point

#### **Divide and conquer**

- Just like with loops, recursion is a way to **repeat** a task
- We might have a big problem (such as deleting a linked list) that we can break down into smaller problems (deleting a node)
- Just like loops, we need a stopping condition this is called the **base case**
- Everything else is the **recursive case**

#### **Example: Factorial**

• The factorial of a number is the product of all the integers from 1 to that number

$$n! = n imes (n-1) imes (n-2) imes \dots imes 2 imes 1$$

- You could also think of it as n! = n imes (n-1)! with a **base case** of 0! = 1
- We could write this as a loop, but it's more fun as recursion:

```
int factorial(int n) {
    int result = 1;
    for (int i = 2; i <= n; i++) {
        result *= i;
     }
    return result;
}</pre>
```

```
int factorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n-1);
}
```

#### **Tracing recursive functions**

```
int factorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n-1);
}
int main() {
    cout << factorial(4) << endl;
}</pre>
```

#### Thinking recursively, step by step

- 1. What is the **base case**? This is the **simplest case** that must be solved directly.
  - For the factorial example, this is factorial(0) = 1
  - There may be more than one base case!
- 2. What is the **recursive case**? This is the case that depends on a prior case.
  - For the factorial example, this is factorial(n) = n \* factorial(n-1)
  - There may be more than one recursive case!
- 3. How does the recursive case get closer to the base case?
  - For the factorial example, this is n-1
  - This is referred to as the **reduction step**

## **Typical structure of a recursive function**

- if (base case)
   solve the problem
  else
   reduce the problem
   call the function again
  - There's no requirement to check the base case first
  - There *is* a requirement that the set of base and recursive cases must:
    - be **exhaustive** (cover all possible cases)
    - be mutually exclusive (no overlap between cases)
  - There can also be more than one base case and/or recursive case

#### **The Towers of Hanoi**

- The Towers of Hanoi is a classic puzzle game with 3 pegs and n disks
- The goal of the game is simple: move all the disks from the 1st to the 3rd peg
- However, there are rules:
  - $\circ~$  Only move one disk at a time
  - A larger disk cannot be placed on top of a smaller disk



## **Recursion involving Linked Lists**

- Linked lists are a natural fit for recursion!
- Operations performed on one element only need to know if it's NULL or not
  - base case: empty list
  - recursive case: non-empty list
  - reduction step: access next element

Example: computing the length of a linked list

## **Printing a linked list**

Given a list of  $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow NULL$ , trace the following:

#### **Iterative solution**

```
void print(Node *head) {
    while (head) {
        cout << head->data << endl;
        head = head->next;
    }
}
```

#### **Recursive solution**

```
void print(Node *head) {
    if (head) {
        cout << head->data << endl;
        print(head->next);
    }
}
```

- What is the **base case**?
- There doesn't seem to be much advantage to the recursive solution, but...

#### **Reversing the order of actions**

Given a list of  $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow NULL$ , trace the following:

```
void print(Node *head) {
    if (head) {
        print(head->next);
        cout << head->data << endl;
    }
}</pre>
```

- How would this be done in an iterative manner?
- This is one of few examples where the recursive solution is really the easiest!

#### Why wouldn't we use recursion?

- There are scenarios where recursion is easier to read and implement
- However, recursion comes at a cost:

```
int factorial(int n) {
    int result = 1;
    for (int i = 2; i <= n; i++) {
        result *= i;
     }
    return result;
}</pre>
```

```
int factorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n-1);
}
```

• The recursive solution just created n stack frames complete with n function return addresses and temporary variable allocations!

#### **Tail recursion**

- There is one way of reducing the overhead, but still using recursion
- Tail recursion is when the very last thing a function does is call itself
  - do not multiply the result by n
  - do not compare the result to anything
  - There can be no other operations between the recursive call and return
- Why? The compiler can **optimize** this to a loop!
- We avoid the overhead of all those stack frames

g++ may optimize other forms of recursion, but it's not guaranteed

#### **Tail recursion example**

Back to the linked list deletion example:

```
void clear_list(Node *head) {
    if (head) {
        clear_list(head->next);
        delete head;
    }
}
```

- Can we make this tail recursive?
- Does it matter, or is this premature optimization?



Can any recursive function be implemented iteratively?

A. Yes

B. No



Trace the following code and write the result:

```
int mystery(int n) {
    if (n < 2)
        return n;
    else
        return mystery(n-1) + mystery(n-2);
}
int main() {
    cout << mystery(4) << endl;
}</pre>
```

#### **Recursion with arrays**

- Linked data structures are a natural fit for recursion, but what about arrays?
- It's doable! We need to consider:
  - What is the **base case**?
  - What is the **reduction step**?
- We can keep track of the "active" piece of the array with two indices, or...
- We can pass the **fill level** of the array as a parameter along with a pointer to the **start of the active portion**

#### **Searching an array**

- Consider the case of searching for a specific value in a sorted array
- A naive approach might be something like:

```
bool in_array(int *arr, int size, int value) {
   for (int i = 0; i < size; i++) {
        if (arr[i] == value)
            return true;
        }
      return false;
}</pre>
```

- This is a linear search with an early return if the value is found
- If the value is not in the array we have to check every element!

## **Binary search**

- Instead of checking every element, we can use a **binary search**:
  - Check the middle element
  - If it's the value we're looking for, we're done!
  - $\circ\,$  If it's less than the value we're looking for, search the second half
  - $\circ\,$  If it's greater than the value we're looking for, search the first half
  - Repeat until the value is found or the array is exhausted
- Each check eliminates half of the remaining elements!
- We could implement this iteratively, but it's a natural fit for recursion

### **Binary search with recursion**

- We have multiple base cases and recursive cases
- Base cases:
  - The array is empty or has one element
  - $\circ\,$  The value is found
- Recursive cases:
  - The value is less than the middle element
  - The value is greater than the middle element
- Reduction step:
  - Chop the array in half and search the appropriate half

#### **Coming up next**

- Good Friday, Easter Monday
- Lab tomorrow: ADT implementation
- Lab Tuesday: Recursion
- Wednesday Lecture: Copying objects
- Assignment 4 🎉 due Monday, April 8th