
COMP 1633: Intro to CS II

Recursion
Charlotte Curtis

March 27, 2024

Where we left off

friend functions and stream
operators

A common abstract data type: stacks

Designing a SetInt ADT

Textbook Sections 11.2, 13.2

class StringStack {
public:
...
private:
 struct Node {
 std::string data;
 Node *next;
 };
 Node *head;
 int capacity;
 int size;
};

1

Today's topics
Something completely different: Recursion!

Note: due to Easter, I had to remove another example of an ADT from the
schedule, but I've posted the content if you'd like to read about queues

Textbook Section 13.2, Chapter 14

2

file:///home/runner/work/w24-001/w24-001/content/lecture/res/queues

And now, recursion!
Recursion is a programming technique that involves a function calling itself

You may have seen a bit of this in COMP 1701, e.g.:

def get_valid_input(valid_choices: list) -> str:
 choice = input('Enter your choice: ')
 if choice not in valid_choices:
 print('Invalid choice!')
 choice = get_valid_input(valid_choices)

 return choice

What is actually happening here???

3

main

x = f()

f

x = g()

g

x = h()

...The call stack

int f() {
 int x = g();
 return x;
}

int g() {
 int x = h();
 return x;
}

int h() ...

int main() {
 int result = f();
 return 0;
}

Each function call adds a stack frame to the stack

The stack frame contains the local variables of the
function and the return address of the caller

4

main

x = f()

f

x = f()

f

x = f()

...Functions calling themselves

int f() {
 int x = f();
 return x;
}

int main() {
 int result = f();
 return 0;
}

Each call adds an independent stack frame

The local variables x do not interfere, and each call
has a unique return address

One big problem: it never ends!

Let's see what happens on Python Tutor

5

https://pythontutor.com/render.html#code=int%20f%28%29%20%7B%0A%20%20int%20x%20%3D%20f%28%29%3B%0A%20%20return%20x%3B%0A%7D%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20result%20%3D%20f%28%29%3B%0A%20%20return%200%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

Definition of Recursion

In programming, recursion involves a function calling itself repeatedly

To be useful, it must stop at some point

6

Divide and conquer
Just like with loops, recursion is a way to repeat a task

We might have a big problem (such as deleting a linked list) that we can break
down into smaller problems (deleting a node)

Just like loops, we need a stopping condition - this is called the base case

Everything else is the recursive case

7

Example: Factorial

The factorial of a number is the product of all the integers from 1 to that number

You could also think of it as with a base case of

We could write this as a loop, but it's more fun as recursion:

int factorial(int n) {
 int result = 1;
 for (int i = 2; i <= n; i++) {
 result *= i;
 }
 return result;
}

int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n-1);
}

8

Tracing recursive functions

int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n-1);
}

int main() {
 cout << factorial(4) << endl;
}

9

Thinking recursively, step by step
1. What is the base case? This is the simplest case that must be solved directly.

For the factorial example, this is factorial(0) = 1

There may be more than one base case!

2. What is the recursive case? This is the case that depends on a prior case.

For the factorial example, this is factorial(n) = n * factorial(n-1)

There may be more than one recursive case!

3. How does the recursive case get closer to the base case?

For the factorial example, this is n-1

This is referred to as the reduction step

10

Typical structure of a recursive function

if (base case)
 solve the problem
else
 reduce the problem
 call the function again

There's no requirement to check the base case first

There is a requirement that the set of base and recursive cases must:
be exhaustive (cover all possible cases)

be mutually exclusive (no overlap between cases)

There can also be more than one base case and/or recursive case

11

The Towers of Hanoi
The Towers of Hanoi is a classic puzzle

game with 3 pegs and n disks

The goal of the game is simple: move all

the disks from the 1st to the 3rd peg

However, there are rules:
Only move one disk at a time

A larger disk cannot be placed on top
of a smaller disk

Image source: Wikimedia Commons 12

https://www.mathsisfun.com/games/towerofhanoi.html
https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg

Recursion involving Linked Lists
Linked lists are a natural fit for recursion!

Operations performed on one element only need to know if it's NULL or not
base case: empty list

recursive case: non-empty list

reduction step: access next element

Example: computing the length of a linked list

13

Printing a linked list
Given a list of 0 -> 1 -> 2 -> 3 -> NULL , trace the following:

Iterative solution

void print(Node *head) {
 while (head) {
 cout << head->data << endl;
 head = head->next;
 }
}

Recursive solution

void print(Node *head) {
 if (head) {
 cout << head->data << endl;
 print(head->next);
 }
}

What is the base case?

There doesn't seem to be much advantage to the recursive solution, but...

14

Reversing the order of actions
Given a list of 0 -> 1 -> 2 -> 3 -> NULL , trace the following:

void print(Node *head) {
 if (head) {
 print(head->next);
 cout << head->data << endl;
 }
}

How would this be done in an iterative manner?

This is one of few examples where the recursive solution is really the easiest!

15

Why wouldn't we use recursion?

There are scenarios where recursion is easier to read and implement

However, recursion comes at a cost:

int factorial(int n) {
 int result = 1;
 for (int i = 2; i <= n; i++) {
 result *= i;
 }
 return result;
}

int factorial(int n) {
 if (n == 0)
 return 1;
 else
 return n * factorial(n-1);
}

The recursive solution just created n stack frames complete with n function

return addresses and temporary variable allocations!

16

Tail recursion
There is one way of reducing the overhead, but still using recursion

Tail recursion is when the very last thing a function does is call itself
do not multiply the result by n

do not compare the result to anything

There can be no other operations between the recursive call and return

Why? The compiler can optimize this to a loop!

We avoid the overhead of all those stack frames

g++ may optimize other forms of recursion, but it's not guaranteed

17

Tail recursion example
Back to the linked list deletion example:

void clear_list(Node *head) {
 if (head) {
 clear_list(head->next);
 delete head;
 }
}

Can we make this tail recursive?

Does it matter, or is this premature optimization?

18

 Recursion check-in 1/2
Can any recursive function be implemented iteratively?

A. Yes

B. No

19

 Recursion check-in 2/2
Trace the following code and write the result:

int mystery(int n) {
 if (n < 2)
 return n;
 else
 return mystery(n-1) + mystery(n-2);
}

int main() {
 cout << mystery(4) << endl;
}

20

Recursion with arrays
Linked data structures are a natural fit for recursion, but what about arrays?

It's doable! We need to consider:
What is the base case?

What is the reduction step?

We can keep track of the "active" piece of the array with two indices, or...

We can pass the fill level of the array as a parameter along with a pointer to the
start of the active portion

21

Searching an array
Consider the case of searching for a specific value in a sorted array

A naive approach might be something like:

bool in_array(int *arr, int size, int value) {
 for (int i = 0; i < size; i++) {
 if (arr[i] == value)
 return true;
 }
 return false;
}

This is a linear search with an early return if the value is found

If the value is not in the array we have to check every element!

22

Binary search
Instead of checking every element, we can use a binary search:

Check the middle element

If it's the value we're looking for, we're done!

If it's less than the value we're looking for, search the second half

If it's greater than the value we're looking for, search the first half

Repeat until the value is found or the array is exhausted

Each check eliminates half of the remaining elements!

We could implement this iteratively, but it's a natural fit for recursion

23

Binary search with recursion
We have multiple base cases and recursive cases

Base cases:
The array is empty or has one element

The value is found

Recursive cases:
The value is less than the middle element

The value is greater than the middle element

Reduction step:
Chop the array in half and search the appropriate half

24

Coming up next
Good Friday, Easter Monday

Lab tomorrow: ADT implementation

Lab Tuesday: Recursion

Wednesday Lecture: Copying objects

Assignment 4 due Monday, April 8th

25

