COMP 1633: Introto CS I




Where we left off

class StringStack {

e friend functions and stream public:
operators private:
struct Node {
e A common abstract data type: stacks std::string data;
. Node *next;
e Designing a SetInt ADT 1
Node *head;
Textbook Sections 11.2, 13.2 int capacity;
int size;

+s



Today's topics

e Something completely different. Recursion!

e Note: due to Easter, | had to remove another example of an ADT from the
schedule, but I've posted the content if you'd like to read about queues

Textbook Section 13.2, Chapter 14


file:///home/runner/work/w24-001/w24-001/content/lecture/res/queues

And now, recursion!

e Recursion is a programming technique that involves a function calling itself
e You may have seen a bit of this in COMP 1701, e.g.:

def get_valid_input(valid_choices: 1list) -> str:
choice = input('Enter your choice: ')
1f choice not in valid_choices:
print('Invalid choice!')
choice = get_valid_input(valid_choices)

return choice

e What is actually happening here???



The call stack

int () {
int x = g();
return x;
¥ int main() {
. int result = f();
TNESGC) return 0; ¥
int x = h(); 1 !
return x;
¥
int h() ...

e Each function call adds a stack frame to the stack

e The stack frame contains the local variables of the
function and the return address of the caller

g

x = h()
f

X =8()
main
x = 1()




Functions calling themselves

int () { int main() {
int x = f(); int result = f();
return x; return 0;

¥ ¥

e Each call adds an independent stack frame

e The local variables x do not interfere, and each call
has a unigue return address

e One big problem: it never ends!

e Let's see what happens on Python Tutor

f

x = 1()
f

x = 1()
main

x =1()



https://pythontutor.com/render.html#code=int%20f%28%29%20%7B%0A%20%20int%20x%20%3D%20f%28%29%3B%0A%20%20return%20x%3B%0A%7D%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20result%20%3D%20f%28%29%3B%0A%20%20return%200%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

Definition of Recursion

@ re-cur-sion
Ira karZH(a)n/
noun MATHEMATICS * LINGUISTICS

the repeated application of a recursive procedure or definition.

* arecursive definition.
plural noun: recursions

e In programming, recursion involves a function calling itself repeatedly

e To be useful, it must stop at some point



Divide and conquer

e Just like with loops, recursion is a way to repeat a task

e We might have a big problem (such as deleting a linked list) that we can break
down into smaller problems (deleting a node)

e Just like loops, we need a stopping condition - this is called the base case

e Everything else is the recursive case



Example: Factorial

e The factorial of a number is the product of all the integers from 1 to that number
nl=nxmn-1)x(n—2)x---x2x1
e You could also think ofitas n! = n x (n — 1)! with a base case of 0! = 1

e \We could write this as a loop, but it's more fun as recursion:

int factorial(int n) {
int result = 1;
for (int 1 = 2; i <= n; i++) {

result *= 1i;
3 else

int factorial(int n) {
if (n == 0)
return 1;

* : _ .
return result: return n factorial(n-1);



Tracing recursive functions

int factorial(int n) {
if (n == 0)
return 1;
else
return n * factorial(n-1),

}

int main() {
cout << factorial(4) << endl;
}



Thinking recursively, step by step

1. What is the base case? This is the simplest case that must be solved directly.
o For the factorial example, thisis factorial(0) = 1

o There may be more than one base case!

2. What is the recursive case? This is the case that depends on a prior case.
o For the factorial example, thisis factorial(n) = n * factorial(n-1)

o There may be more than one recursive case!

3. How does the recursive case get closer to the base case?
o For the factorial example, thisis n-1

o This is referred to as the reduction step

10



Typical structure of a recursive function

if (base case)
solve the problem
else
reduce the problem
call the function again

e There's no requirement to check the base case first

e There is a requirement that the set of base and recursive cases must:

o be exhaustive (cover all possible cases)
o be mutually exclusive (no overlap between cases)

e There can also be more than one base case and/or recursive case

11



The Towers of Hanoi

e The Towers of Hanol Is a classic puzzle
game with 3 pegs and n disks

e The goal of the game is simple: move all
the disks from the 1st to the 3rd peg

e However, there are rules:
o Only move one disk at a time

o Alarger disk cannot be placed on top
of a smaller disk

Image source: Wikimedia Commons 12


https://www.mathsisfun.com/games/towerofhanoi.html
https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg

Recursion involving Linked Lists

e Linked lists are a natural fit for recursion!

e Operations performed on one element only need to know if it's NULL or not
o base case: empty list

o recursive case: non-empty list

o reduction step: access next element

Example: computing the length of a linked list

13



Printing a linked list

Givenalistof @ -> 1 -> 2 -> 3 -> NULL , trace the following:

Iterative solution Recursive solution
volid print(Node *head) { vold print(Node *head) {
while (head) { 1f (head) {
cout << head->data << endl; cout << head->data << endl;
head = head->next; print(head->next);
) )
b b

e \What is the base case?

e There doesn't seem to be much advantage to the recursive solution, but...

14



Reversing the order of actions

Givenalistof @ -> 1 -> 2 -> 3 -> NULL , trace the following:

void print(Node *head) {
if (head) {
print(head->next);
cout << head->data << endl;

e How would this be done in an iterative manner?

e This is one of few examples where the recursive solution is really the easiest!

15



Why wouldn't we use recursion?

e There are scenarios where recursion is easier to read and implement

e However, recursion comes at a cost:

int factorial(int n) {
int result = 1;
for (int i = 2; i <= n; i++) {

* — 1 =
} result *= 1i; else

int factorial(int n) {
if (n == 0)
return 1;

* : _ .
return result: return n factorial(n-1);

e The recursive solution just created n stack frames complete with n function
return addresses and temporary variable allocations!

16



Tall recursion

e There is one way of reducing the overhead, but still using recursion

e Tail recursion is when the very last thing a function does is call itself
o do not multiply the result by n

o do not compare the result to anything
o There can be no other operations between the recursive call and return
 Why? The compiler can optimize this to a loop!

e \We avoid the overhead of all those stack frames

g++ may optimize other forms of recursion, but it's not guaranteed

17



Tall recursion example

Back to the linked list deletion example:

void clear_list(Node *head) {
if (head) {
clear_list(head->next);
delete head;

e Can we make this tail recursive?

e Does it matter, or is this premature optimization?

18



© Recursion check-in 1/2

Can any recursive function be implemented iteratively?

A. Yes
B. No

19



© Recursion check-in 2/2

Trace the following code and write the result:

int mystery(int n) {
if (n < 2)
return n;
else
return mystery(n-1) + mystery(n-2);
¥

int main() {
cout << mystery(4) << endl;
¥

20



Recursion with arrays

e Linked data structures are a natural fit for recursion, but what about arrays?

e It's doable! We need to consider:
o What is the base case”?

o What is the reduction step?
e \We can keep track of the "active" piece of the array with two indices, or...

e \We can pass the fill level of the array as a parameter along with a pointer to the
start of the active portion

21



Searching an array

e Consider the case of searching for a specific value in a sorted array
e A naive approach might be something like:

bool in_array(int *arr, int size, int value) {
for (int 1 = 0; i < size; i++) {
if (arr[1i] == value)
return true;

}

return false;

}

e This is a linear search with an early return if the value is found

e If the value is not in the array we have to check every element!

22



Binary search

 Instead of checking every element, we can use a binary search:
o Check the middle element

o If it's the value we're looking for, we're done!
o If it's less than the value we're looking for, search the second half
o If it's greater than the value we're looking for, search the first half
o Repeat until the value is found or the array is exhausted

e Each check eliminates half of the remaining elements!

e We could implement this iteratively, but it's a natural fit for recursion

23



Binary search with recursion

We have multiple base cases and recursive cases

Base cases:
o The array is empty or has one element

o The value is found

Recursive cases:
o The value is less than the middle element

o The value is greater than the middle element

Reduction step:
o Chop the array in half and search the appropriate half

24



Coming up next

Good Friday, Easter Monday

Lab tomorrow: ADT implementation

Lab Tuesday: Recursion

Wednesday Lecture: Copying objects

Assignment 4 #: due Monday, April 8th

25



