
COMP 1633: Intro to CS II

ADT Case Study
Charlotte Curtis

March 25, 2024

Where we left off

const correctness with classes

Constructors and destructors

Function and operator overloading

Textbook Sections 10.2, 11.2

class Time {
public:
 Time(int h, int m, int s);
 Time();

 void write(std::ostream &out) const;
 void increment();
 bool operator<(const Time &t) const;
private:
 int hours;
 int minutes;
 int seconds;

 int compare(const Time &t) const;
};

1

Today's topics
More overloading: stream operators

A common abstract data type: stacks

Textbook Sections 11.2, 13.2

2

Rules of operator overloading
Built-in operators cannot be redefined

e.g. can't redefine . or ::

Only existing operators can be overloaded

e.g. can't define an @ operator

Precedence and associativity are the same as for the built-in operators
e.g. + has higher precedence than ==

Cannot change the number of arguments that an operator takes
e.g. + can't be redefined to take 3 arguments

3

Conventions of operator overloading
In general, the purpose of operator overloading is to make code more readable

Keep the semantics of the operator the same
Don't redefine + to mean subtraction!

Provide the operator only if its meaning is obvious
Time + Time is obvious, but what about Time * Time ?

If one operator is overloaded, all related operators should be overloaded

if you overload < , you should also overload > , <= , >= , and ==

If you overload + , you should probably also provide - , += , and -=

4

Overloading thus far
We can overload functions (like constructors)

bool is_yummy(const char *food);
bool is_yummy(const std::string &food);

We can overload binary operators (like == or [])

bool operator[](int i) const; // access element i in a list-type ADT

We haven't yet done stream operators (<< and >>)

We also skipped over unary operators (++ and !)

5

Member vs non-member overloading
While I've introduced overloading operators in the context of classes, this is not
necessary - operators can be overloaded as non-member functions

For example, we could have defined operator== as a non-member function:

bool operator==(const Time &lhs, const Time &rhs) {
 return (lhs.hours == rhs.hours
 && lhs.minutes == rhs.minutes
 && lhs.seconds == rhs.seconds);
}

However, we made the member variables private , so this doesn't work

Also keep in mind, member functions pass the left-hand side as this

6

Overloading stream operators
Taking a look at the documentation for operator<< , you can see that it's an

overloaded member function of std::ostream

It's also clear when you use it that the left-hand side is the stream, and the right-
hand side is the thing you're printing

cout << "Hello, world!" << endl;

This is a problem! We can't overload operator<< in the Time class

It needs to be a non-member function that takes a std::ostream as the LHS

That's a problem too though - we can't access the private member variables

7

https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt

Possible solution: friend functions
We can make the operator overload a friend of the Time class

friend functions are declared as part of the class declaration (usually the
public section), but they are not member functions

To quote the textbook: "Friends can access private members"

Note: this is somewhat contentious, as friend s kind of break encapsulation.
Can you think of a way to implement this without friend ?

8

Overloading stream operators
friend function declaration:

class Time {
public:
 friend std::ostream &operator<<(std::ostream &out, const Time &t);
... etc

The implementation doesn't use the keyword friend , but it can magically access
the private members::

std::ostream &operator<<(std::ostream &out, const Time &t) {
 out << t.hours << ':' << t.minutes << ':' << t.seconds;
 return out;
}

9

 Operator overloading check-in 1/2
The primary purpose of operator overloading is to:

A. Improve memory efficiency

B. Improve performance

C. Improve readability

D. Make classes easier to write

E. Encapsulation

10

 Operator overloading check-in 2/2
The << operator can't be overloaded as a member function because:

A. The left-hand side is a std::ostream

B. It's a binary operator

C. It needs to be a const function

D. It needs to be public

E. It wants to have a friend

11

A common ADT: Stacks
What makes a class an abstract data type?

It has a valid domain (set of values)

It has operations that can be performed on it

It hides the implementation details

Our Time class is a (simple) ADT, but it's pretty boring

Let's look at a more interesting one: stacks

12

Stacks
Just like it sounds, a stack is a data storage structure that lets you:

put stuff on the top of the stack

take stuff off the top of the stack

This is called LIFO (last in, first out)

In computer science, stacks are used for:
the function call stack, aka "the stack"

undo operations in most programs

bash command history (up arrow)

The "back" button in your browser

13

Specifying the ADT
We need to specify the domain and operations for our stack ADT

Domain:
a homogenous base type, like int or std::string

grows and shrinks dynamically, some reasonable max capacity

Operations:
create an empty stack

check if the stack is empty/full (empty/full)

add/remove an element to the "top" of the stack (push/pop)

Look at the top element without removing (peek)

14

Sample interface

class StringStack {
public:
 StringStack(int capacity);
 ~StringStack();

 bool empty() const;
 bool full() const;
 void push(const std::string &s);
 std::string pop();
 std::string peek() const;
private:
 ???
};

15

Sample usage
Let's implement browser history using our stack ADT:

StringStack history(10); // max 10 pages
history.push("https://www.mymru.ca/");
history.push("https://stackoverflow.com/");
history.push("https://www.funnycatvideos.com/");

// go back to the previous page
load_url(history.pop());

// hover over the back button
if (history.empty())
 show_message("First page, can't go back\n");
else:
 show_message("Click to go back to: " + history.peek());

16

StringStack implementation V1
Based on its usage and public interface, how is StringStack implemented?

Option 1: Arrays

class StringStack {
public:
...
private:
 int capacity;
 std::string *stack;
 ???
}

Problem: remember how arrays need shifting to add to the "head"?

Solution: who cares which end is the head!

17

file:///lecture/16-linked-lists/#arrays-vs-linked-lists

Complete private section for V1

class StringStack {
public:
...
private:
 int capacity;
 std::string *stack; // pointer to the array
 int top; // index of the top element
}

top is the index of the top element

What should top be if the stack is empty?

18

StringStack implementation V2
Adding/removing elements at the head is easy for linked lists

Option 2: Linked list

class StringStack {
public:
...
private:
 struct Node {
 std::string data;
 Node *next;
 };
 Node *head; // pointer to the head node
 ???

Problem: there's no inherent capacity for a linked list

Solution: add a counter to keep track of number of elements 19

Complete private section for V2

class StringStack {
public:
...
private:
 struct Node {
 std::string data;
 Node *next;
 };
 Node *head; // pointer to the head node
 int capacity;
 int size; // number of elements in the stack
}

The Node struct is private because it's an implementation detail

20

Constructors/destructors
Note: using namespace std; shouldn't go in the header file, but it's okay in .cpp

// Array version (V1)
StringStack::StringStack(int capacity) {
 string *stack = new string[capacity];
 this->capacity = capacity;
 top = -1;
}

StringStack::~StringStack() {
 delete[] stack;
}

// Linked list version (V2)
StringStack::StringStack(int capacity) {
 head = NULL;
 this->capacity = capacity;
 size = 0;
}

StringStack::~StringStack() {
 Node *curr = head;
 while (curr) {
 Node *next = curr->next;
 delete curr;
 curr = next;
 }
}

21

empty , full , and peek

// Array version (V1)
bool StringStack::empty() const {
 return top == -1;
}

bool StringStack::full() const {
 return top == capacity - 1;
}

std::string StringStack::peek() const {
 if (empty())
 return "";
 return stack[top];
}

// Linked list version (V2)
bool StringStack::empty() const {
 return size == 0;
}

bool StringStack::full() const {
 return size == capacity;
}

std::string StringStack::peek() const {
 if (empty())
 return "";
 return head->data;
}

22

push and pop

// Array version (V1)
void StringStack::push(const std::string &s) {
 if (full())
 return;
 stack[++top] = s;
}

std::string StringStack::pop() {
 if (empty())
 return "";
 return stack[top--];
}

// Linked list version (V2)
void StringStack::push(const std::string &s) {
 if (full())
 return;
 Node *new_node = new Node;
 new_node->data = s;
 new_node->next = head;
 head = new_node;
 size++;
}

std::string StringStack::pop() {
 if (empty())
 return "";
 std::string data = head->data;
 Node *next = head->next;
 delete head;
 head = next;
 size--;
 return data;
}

23

Summary
The linked list implementation is more complex, but with one big advantage: no
max capacity

In fact, keeping track of the size adds to the complexity

The array implementation could dynamically resize whenever you try to push to a

full stack, but this is also introducing complexity

Which one is better? Depends on your use case!

24

Coming up Next
Assignment 4 - refactoring Assignment 3 to use an ADT

Lab Exercise: Designing an ADT

Next lecture: Something totally different: recursion!

Textbook Chapter 14

25

