COMP 1633: Intro to CS I

ADT Case Study

Charlotte Curtis
222222222222

Where we left off

e const correctness with classes
e Constructors and destructors

e Function and operator overloading

Textbook Sections 10.2, 11.2

class Time {
public:

Time(int h, int m, int s);
Time();

void write(std::ostream &out) const
vold increment();,
bool operator<(const Time &t) const

private:

+s

int hours;
int minutes;
int seconds;

int compare(const Time &t) const;

4

4

Today's topics

e More overloading: stream operators

e A common abstract data type: stacks

Textbook Sections 11.2, 13.2

Rules of operator overloading

e Built-in operators cannot be redefined
o e.g. can't redefine . or ::

e Only existing operators can be overloaded
o e.g. can't define an @ operator

e Precedence and associativity are the same as for the built-in operators
o e.g. + has higher precedence than ==

e Cannot change the number of arguments that an operator takes
o e.g. + can't be redefined to take 3 arguments

Conventions of operator overloading

In general, the purpose of operator overloading is to make code more readable
o Keep the semantics of the operator the same
o Don't redefine + to mean subtraction!

e Provide the operator only if its meaning is obvious
o Time + Time IS obvious, but what about Time * Time ?

e If one operator is overloaded, all related operators should be overloaded
o if you overload <, you should also overload >, <=, >=,and ==

o If you overload + , you should probably also provide -, +=,and -=

Overloading thus far

e \We can overload functions (like constructors)

bool is_yummy(const char *food);
bool is_yummy(const std::string &food);

e \WWe can overload binary operators (like == or [])

bool operator[](int 1) const; // access element 1 in a list-type ADT

e We haven't yet done stream operators (<< and >>)

e We also skipped over unary operators (++ and !)

Member vs non-member overloading

e While I've introduced overloading operators in the context of classes, this is not
necessary - operators can be overloaded as non-member functions

e For example, we could have defined operator== as a non-member function:

bool operator==(const Time &lhs, const Time &rhs) {

return (lhs.hours == rhs.hours
&& lhs.minutes == rhs.minutes
&& lhs.seconds == rhs.seconds);

e However, we made the member variables private , so this doesn't work

e Also keep in mind, member functions pass the left-hand side as this

Overloading stream operators

Taking a look at the documentation for operator<<, you can see that it's an
overloaded member function of std::ostream

It's also clear when you use it that the left-hand side is the stream, and the right-
hand side is the thing you're printing

cout << "Hello, world!" << endl;

e This is a problem! We can't overload operator<< inthe Time class
e |t needs to be a non-member function that takes a std::ostream as the LHS

e That's a problem too though - we can't access the private member variables

https://en.cppreference.com/w/cpp/io/basic_ostream/operator_ltlt

Possible solution: friend functions

e \WWe can make the operator overload a friend ofthe Time class

e friend functions are declared as part of the class declaration (usually the
public section), but they are not member functions

e To quote the textbook: "Friends can access private members"

Note: this is somewhat contentious, as friend s kind of break encapsulation.
Can you think of a way to implement this without friend ?

Overloading stream operators

e friend function declaration:

class Time {
public:
friend std::ostream &operator<<(std::ostream &out, const Time &t);
. etc

e The implementation doesn't use the keyword friend , but it can magically access
the private members::

std::ostream &operator<<(std::ostream &out, const Time &t) {
out << t.hours << '":'" << t.minutes << ':' << t.seconds;
return out;

© Operator overloading check-in 1/2

The primary purpose of operator overloading is to:

A. Improve memory efficiency
B. Improve performance

C. Improve readability

D. Make classes easier to write

E. Encapsulation

10

© Operator overloading check-in 2/2

The << operator can't be overloaded as a member function because:

A. The left-hand side is a std::ostream
B. It's a binary operator

C. It needs to be a const function

D. It needs to be public

E. It wants to have a friend

11

A common ADT: Stacks

e What makes a class an abstract data type”?
o It has a valid domain (set of values)

o It has operations that can be performed on it
o It hides the implementation detalils
e Our Time class is a (simple) ADT, but it's pretty boring

e Let's look at a more interesting one: stacks

12

Stacks

e Just like it sounds, a stack is a data storage structure that lets you:
o put stuff on the top of the stack

o take stuff off the top of the stack
e This is called LIFO (last in, first out)

e In computer science, stacks are used for:
o the function call stack, aka "the stack"

o undo operations in most programs
o bash command history (up arrow)

o The "back" button in your browser

13

Specifying the ADT

e \We need to specify the domain and operations for our stack ADT

e Domain:
o a homogenous base type, like int or std::string

o grows and shrinks dynamically, some reasonable max capacity

e Operations:
o create an empty stack

o check if the stack is empty/full (empty/full)
o add/remove an element to the "top"” of the stack (push/pop)

o Look at the top element without removing (peek)

14

Sample interface

class StringStack {

public:
StringStack(int capacity);
~StringStack();

bool empty() const;

bool full() const;

void push(const std::string &s);
std::string pop();

std::string peek() const;

private:
?7?7?
i

15

Sample usage

Let's implement browser history using our stack ADT:

StringStack history(10); // max 10 pages
history.push("https://www.mymru.ca/");
history.push("https://stackoverflow.com/");
history.push("https://www.funnycatvideos.com/");

// go back to the previous page
load_url(history.pop());

// hover over the back button
1f (history.empty())
show_message("First page, can't go back\n");
else:
show_message('"Click to go back to: " + history.peek());

16

StringStack implementation V1

e Based on its usage and public interface, how is StringStack implemented?
e Option 1: Arrays

class StringStack {
public:

private:
int capacity;
std::string *stack;
?7?7?

}

e Problem: remember how arrays need shifting to add to the "head"?

e Solution: who cares which end is the head!

17

file:///lecture/16-linked-lists/#arrays-vs-linked-lists

Complete private section for V1

class StringStack {
public:

private:
int capacity;
std::string *stack; // pointer to the array
int top; // index of the top element

e top Isthe index of the top element

e What should top Dbe if the stack is empty?

18

StringStack implementation V2

e Adding/removing elements at the head is easy for linked lists
e Option 2: Linked list

class StringStack {
public:

private:
struct Node {
std::string data;
Node *next;
Iy
Node *head; // pointer to the head node
?7?7?

e Problem: there's no inherent capacity for a linked list

e Solution: add a counter to keep track of number of elements

19

Complete private section for V2

class StringStack {
public:

private:
struct Node {
std::string data;
Node *next;
3
Node *head; // pointer to the head node
int capacity;
int size; // number of elements in the stack

e The Node structis private because it's an implementation detail

20

Constructors/destructors

Note: using namespace std; shouldn't go in the header file, but it's okay in .cpp

// Linked list version (V2)
StringStack: :StringStack(int capacity) {
head = NULL;

// Array version (V1) this->capacity = capacity;

StringStack: :StringStack(int capacity) {

_ : / ize = 0,

string *stack = new string[capacity]; } S12€ o0

this->capacity = capacity;
: top = -1; StringStack: :~StringStack() {

Node *curr = head;
: : while (curr
StringStack: :~StringStack() { Noée *n;xg — curr->next:
: delete[] stack; delete ourr: ’
14

curr = next;

empty, full, and peek

// Array version (V1) // Linked list version (V2)

bool StringStack::empty() const { bool StringStack::empty() const {
return top == -1; return size == 0;

} }

bool StringStack::full() const { bool StringStack::full() const {
return top == capacity - 1; return size == capacity;

} }

std::string StringStack::peek() const { std::string StringStack::peek() const {
if (empty()) if (empty())

return ""; return "";

return stack[top]; return head->data;

} }

22

push and pop

// Array version (V1)
void StringStack::push(const std::string &s) {
if (full())
return;
stack[++top] = s;

}

std::string StringStack: :pop() {
if (empty())
return "";
return stack[top--];

// Linked list version (V2)
void StringStack::push(const std::string &s) {

std:

if (full())
return;

Node *new_node =
new_node->data = s;
new_node->next =

new Node;

head;

head = new_node;

Size++;

:string StringStack: :pop() {

if (empty())

return "":

4

std::string data = head->data;

Node *next =
delete head;
head = next;
size--;

return data;

head->next;

23

Summary

e The linked list implementation is more complex, but with one big advantage: no
max capacity

e In fact, keeping track of the size adds to the complexity

e The array implementation could dynamically resize whenever you try to push to a
full stack, but this is also introducing complexity

e Which one is better? Depends on your use case!

24

Coming up Next

e Assignment 4 #: - refactoring Assignment 3 to use an ADT
e Lab Exercise: Designing an ADT

e Next lecture: Something totally different: recursion!

Textbook Chapter 14

25

