
COMP 1633: Intro to CS II

More Classes
Charlotte Curtis

March 20, 2024

Where we left off
Intro to object oriented programming

Abstraction terminology

Classes and objects - defining,
creating, using

Textbook Sections 10.2-10.3

class Cat {
public:
 void meow();
private:
 string name;
 int age;
};

1

Today's topics
const correctness with classes

Constructors and destructors

Function and operator overloading

Textbook Sections 10.2, 11.2

2

Our Time class
Last lecture we defined a Time class, but it's a bit clunky to use:

Time now;
now.set(12, 30, 0);
now.write(cout);

There's also no guarantee any of those functions won't modify the Time

We can fix these things with const correctness, constructors (and destructors),

and operator overloading

3

const correctness
How should I ensure that these functions don't modify the Time object?

void write(std::ostream &out);
int compare(Time other);

const before a parameter means that the function will not modify it

const after a member function means the function will not modify this

As usual, if a function isn't going to modify something, const is a good idea

For that matter we might want to make compare take a const Time &
instead of a Time - why?

4

Remember this ?
this is a pointer to the object that the member function is being called on

void Time::five_o_clock_somewhere() {
 this->hour = 5; // usually don't explicitly use this->
}

Time now, later;
now.foo();
later.foo();

No matter what class you're in, this is a const pointer of the class type

In this example, you can imagine it being declared as Time * const this

Adding the extra const means that this is a const Time * const this

5

const correctness
As a general rule, if you can make something const , you should

Caveat: A const member function can only call other const member functions
(or use const_cast , but that's not a great idea)

When you start using const , you should use it consistently

Let's go ensure const correctness in our Time class

6

Constructors
It's really useful to initialize variables when we declare them, but we can't use the
= {} syntax with classes (in C++ 98)

We can, however, define a constructor

This is a special member function that is called when the object is created

Syntax: same name as the class, no return type, and should be public

class Time {
public:
 Time();
};

7

Implementing a constructor

Just like implementing a member function, but no return type:

Time::Time() {
 // or however you want the initial state
 hours = 0;
 minutes = 0;
 seconds = 0;
}

If all you're doing is setting values, better to use an initializer list:

Time::Time() : hours(0), minutes(0), seconds(0) {}

Again, this is C++98 - no curly brace initialization 8

Using a constructor
Constructors are called implicitly when the object is created:

Time now; // calls Time::Time()
Time *later = new Time; // also calls Time::Time()

But it'd be useful to be able to set the time when we create the object:

Time now(3, 15, 2); // Can't call Time::Time(), too many arguments

We can do this by overloading the constructor!

class Time {
public:
 Time(); // constructor with no arguments
 Time(int h, int m, int s); // constructor with 3 arguments
};

9

Side tangent: Function overloading
A function is fully defined by its signature - its name and parameter types

We can have multiple functions with the same name and different signatures!

int add(int a, int b);
double add(double a, double b);
...
int n = add(1, 2); // calls the first one
double x = add(1.5, 2.5); // calls the second one

Our constructors might look something like:

Time::Time() : hours(0), minutes(0), seconds(0) {}
Time::Time(int h, int m, int s) : hours(h), minutes(m), seconds(s) {}

10

Side tangent: Function signatures
What counts as a different signature? Consider void foo(int a, int b); :

Function Different?

void foo(int a, int b, int c); Yes - number of parameters

void foo(int a, char c); Yes - types of parameters

void foo(char c, int a); Yes - order of parameters

void foo(int c, int d); No - names of parameters don't matter

void foo(const int a, int b); No - const doesn't matter

bool foo(int a, int b); No - return type doesn't matter

11

Back to constructors
All constructors must be named ClassName and have no return type

Otherwise it's a standard function that can do anything:

Time::Time(bool now) {
 // query the system for the current time
}

If you don't specify a constructor a default one is created that does nothing:

Time::Time() {}

As soon as you specify a constructor, the default one goes away!

12

Destructors
Every new needs a delete , so what if we dynamically allocate data in a class?

We can define a destructor to be called when the object is destroyed

Syntax is the same as a constructor, but with a ~ in front:

class Time {
public:
 ~Time();
};

Time::~Time() {
 // clean up any dynamically allocated data
}

A destructor cannot take any parameters or have a return type

13

Using a destructor
Destructors are called implicitly when the object is destroyed:

Time *later = new Time; // calls Time::Time()
delete later; // calls Time::~Time()

Objects allocated on the stack are destroyed when they go out of scope:

void foo() {
 Time now; // calls Time::Time()
} // now goes out of scope, calls Time::~Time()

Destructors are only needed if you have dynamically allocated data - our Time

class actually doesn't need one

14

Better example: An IntList class

class IntList {
public:
 IntList();
 ~IntList();
 void append(int n);
 void write(std::ostream &out) const;
private:
 struct Node {
 int data;
 Node *next;
 };
 Node *head;
};

15

The IntList destructor

IntList::~IntList() {
 Node *curr = head;
 while (curr) {
 Node *temp = curr;
 curr = curr->next;
 delete temp;
 }
}

Alternatively, this could be put in a public member function named clear and

called from the destructor

This would allow the client to clear the list without destroying the object

16

 const and Constructors check-in 1/2
Which of the following is not a valid constructor declaration for the Time class?

A. Time();

B. Time(int h, int m, int s);

C. Time(int h, int m);

D. Time(int h, int m, int s) const;

E. Time(std::string the_time);

17

 const and Constructors check-in 2/2
const after a member function declaration means:

A. The function can only be called on const objects

B. The this pointer is const , but the object it points to is not

C. The object the this pointer points to is const , but the pointer itself is not

D. The function will not modify the object it is called on

E. The function will not modify the arguments that are passed to it

18

Operator overloading
Remember the compare function that I was too lazy to implement?

if (now.compare(later) == -1) {
 // do something
}

I'd rather write this:

if (now < later) {
 // do something
}

We can do this with operator overloading!

19

Operator overloading
Operators are member functions with a bit of extra syntax:

class Time {
public:
 bool operator < (const Time &other) const;
};

Now when we call now < later , the compiler sees:

now.operator < (later);

The calling object (now) becomes the left hand side (LHS) of the operator, and

the argument (later) becomes the right hand side (RHS)

20

Coming up next
Assignment 3 due Monday

Lab: Class constructors and overloading

Assignment 4 will be refactoring assignment 3 with a Leaderboard as an
abstract data type!

21

