
COMP 1633: Intro to CS II

Intro to Classes
Charlotte Curtis
March 18, 2024

Where we left off
Various linked list algorithms:

Inserting a node

Searching for a value

Deleting a node

Passing linked lists to functions

Linked list variations

Textbook Chapter 13

void clear_list(Node *&head) {
 while (head) {
 Node *temp = head;
 head = head->next;
 delete temp;
 }
}

1

Today's topics
Intro to object oriented programming

Abstraction terminology

Classes and objects - defining, creating, using

Textbook Sections 10.2-10.3

2

Object oriented programming
So far we've been implementing solutions in a procedural style

The object oriented approach is based on the idea that different objects can be
interacted with in a different way

You can sit on a chair

You can draw with a pen

You can (probably) pick up a chair and a pen

Can you draw with a chair?

In the OO approach, we can encapsulate data and functions in a class - an
abstract data type that defines how an object can be interacted with

3

Abstraction

"The act of separating the essential qualities of an idea or object from the
details of how it works or is composed" - Nell Dale and Chip Weems

Image source 4

https://dl.acm.org/doi/10.1145/1232743.1232745

Abstraction in Computer Science
A key concept that allows us to build complex systems by:

Understanding the overall system without understanding all the details

Focus on the parts of the system that are relevant to us

Use libraries and APIs without knowing how they've been implemented

In general, two types of abstraction:
Data abstraction - hiding the details of how data is stored and accessed

Procedural abstraction - hiding the details of how a function is implemented

5

Procedural abstraction
Say I provide a header file and precompiled object file for the following functions:

// Reads a date formatted as year-month-day from source
void read_date(Date &date, std::istream &source);

// Writes the date to the output stream as year-month-day
void write_date(const Date &date, std::ostream &out);

How are these functions implemented?

Does it matter as long as they work?

All the built-in functions we've been using are examples of abstraction!

6

Data abstraction
Just as a function's behaviour can be separated from its implementation, data
abstraction separates the properties of a data type from its implementation

Essential for the design and planning of custom data types

Every data type has two components:

Domain - the set of values that the type can take

Operations - things that can be done with the type

An abstract data type (ADT) is a data type whose properties (domain and

operations) are specified independent of the implementation

7

Example: int
The domain of int is the set of all integers

Operations:
Arithmetic: + , - , * , / , %

Comparison: == , != , < , > , <= , >=

Assignment: =

Increment/decrement: ++ , --

How integers are actually implemented is irrelevant to us!

Note: According to our textbook, built-in types are ADTs

8

Example: a new list type called IntList
Domain, with some arbitrary decisions:

Homogenous linear collection of C++ int s

Minimum size 0, maximum size 100

Access by position starting from 1

Operations:
insert , delete , retrieve at a specific position

search for a value

length , sort , print the list

9

Example: a new list type called IntList
If I handed you a .h and .o file implementing IntList , you could use it without

knowing how it works
Internally, is it a linked list? An array?

Is the space allocated on the stack or the heap?

Is the length calculated on the fly, or stored in a variable?

These are all details that you need to decide when implementing an ADT

To implement an ADT, we need to define a class

10

Classes

A class is a blueprint for creating objects, much like how a struct is a blueprint

for creating data structures

struct STime {
 int hours;
 int minutes;
 int seconds
};

class CTime {
 int hours;
 int minutes;
 int seconds;
 void write(std::ostream &out);
};

A class is a type of object, just like int or string or Node

Member functions are accessed using . or -> just like member variables

In fact, in C++ a struct and a class are almost identical 11

Objects
After defining a class (or a struct), we can create objects of that type

Also called an instance of the class

The syntax differs from a struct a little:

STime now = {5, 0, 0}; // struct
CTime bedtime; // class - can't use {} to initialize
bedtime.hours = 11; // uh oh, this doesn't work either!

The main difference between a struct and a class is that the member
variables (and functions) of a class are private by default

private members can only be accessed by other members of the class

12

Class definition: general form

class ClassName {
public:
 // Public member functions (maybe some variables)
private:
 // Private member variables and functions
};

The public and private keywords are access modifiers

If you don't specify one or the other, private is assumed

Good style to have public interface first, then private implementation details

13

Example: Time class
In general, anything functions that the user of the class needs to access should be
public , and anything else should be private - including member variables!

private members

hours

minutes

seconds

public members

write(std::ostream &out)

set(int h, int m, int s)

int compare(Time other)

void increment()

14

Side tangent: setters and getters
Good practice to encapsulate member variables by making them private

But this means we need a way to access them from outside the class

Getters and setters are public member functions that allow us to access and
modify private member variables

This seems like extra work, but it allows us to do things like:
Check for valid values

Change the implementation of the class without affecting the user

All this being said, the C++ FAQ recommends avoiding trivial getters/setters

15

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-get

time.h

Common for a class to have its own header file and implementation file (.cpp)

#ifndef TIME_H
#define TIME_H
class Time {
public:
 void write(std::ostream &out);
 void set(int h, int m, int s);
 int compare(Time other);
 void increment();
private:
 int hours;
 int minutes;
 int seconds;
};
#endif // TIME_H

16

 Classes Check-in 1/2
How much memory is allocated when the following code is executed?

A. 0 bytes

B. 5 bytes

C. 8 bytes

D. 24 bytes

E. Undefined

class Student {
public:
 void set(int id, const char *name);
 void write(std::ostream &out);
private:
 char name[20];
 int id;
};

17

 Classes Check-in 2/2
What is the main difference between a struct and a class ?

A. A struct is a type of object, a class is a blueprint for creating objects

B. struct s can have public member variables, class es can't

C. class es can have functions, struct s can't

D. struct members are public by default, class members are private by default

E. struct s are allocated on the stack, class es are allocated on the heap

18

Using classes
The program using the class is

often called the client

The client program #include s

the header file to use the class

Implementation is in the .cpp
file - compiled separately

This is the same structure used in assignment 3! 19

Declaring objects
Just like any other variable, we can declare objects of a class type, or pointers to

objects of a class type

// In main.cpp
Time now; // object on the stack
Time *later = new Time; // pointer to object on the heap

now.set(3, 30, 0); // set the time for now
later->set(5, 0, 0); // set the time for later

This isn't going to work just yet, we haven't actually implemented the class!

All we've done is describe the class specification or interface

20

Implementing classes
A struct just needs its declaration, but for a class we need to implement its

member functions (aka methods)

Syntax is a slight modification on the usual function definition:

// in time.cpp
ReturnType ClassName::func_name(Parameters) {
 // Function body
}

:: is called the scope resolution operator

You've seen this already with std::ostream , std::cout , etc

This allows multiple classes to have functions with the same name, like set

21

Implementing the Time::set function

// in time.cpp
void Time::set(int h, int m, int s) {
 hours = h;
 minutes = m;
 seconds = s;
}

When implementing a member function, you don't need to use the . or ->

operators to access member variables

If you do need to disambiguate, you can use the this pointer, which is

automatically created as a pointer to the current object

this->hours = h;

22

Calling member functions
Say we want to find the index position of the word "World" in a string:

Python

hello = "Hello, World!"
pos = hello.find("World")

C++

string hello = "Hello, World!";
int pos = hello.find("World");

In both languages, find is a member function of the string class

Calling a member function requests that the object perform some function

In this case: "Hey, hello ! Find the word 'World' and give me the index"

How is find implemented? No idea! Thanks, abstraction.
23

Calling member functions of our own class
Exactly the same:

// in main.cpp
Time now;
now.set(3, 30, 0);

The now object is automatically passed to the set function as the this pointer
- it's not in the parameter list!

If you have a pointer to an object, you can use the -> operator:

Time *later = new Time;
later->set(5, 0, 0);

Just like struct s, this is equivalent to (*later).set(5, 0, 0);

24

Finishing off the class

We have a few more functions to implement:

write - write the time to an output stream

compare - compare two times

increment - increment the time by one second

The funkiest one is compare - in addition to the default this parameter, it needs
another Time object

25

Coming up next
Lecture: more on classes

Assignment 3 - Due Monday, March 25

Lab: Classes and objects

Textbook Sections 10.2-10.3

26

