
COMP 1633: Intro to CS II

More Linked Lists
Charlotte Curtis
March 13, 2024

Where we left off
Intro to linked list structures

Nodes and node pointers

Building lists

Traversing lists

Lists vs Arrays

Textbook Sections 13.1

// Start the list
Node *head = new Node;
head->data = 1;

// Add another element
head->next = new Node;
head->next->data = 2;
head->next->next = NULL;

1

Today's topics
Algorithms for working with linked lists

Inserting a node

Searching for a value

Deleting a node

Passing linked lists to functions

Linked list variations

Textbook Chapter 13

2

Traversing a list
In C++ syntax:

Node *current = head;
while (current) { // or while (current != NULL)
 // do something with current->data
 current = current->next;
}

This is a sentinel loop that stops when current is NULL
As always, the LCV update must be the last line of the loop body

Very important that the last node point to NULL !

current does not allocate new memory (other than for the pointer itself)

3

Passing linked lists to functions

Many algorithms, like printing a list, would be most useful as a function

What should be passed to the function? By value or by reference?

The whole list is attached to the head pointer

Does the head need to point somewhere else?

// by value
void print(Node *head);

// by reference
void insert(Node *&head, int value);

If Node *& is confusing, you can use a typedef :

typedef Node * NodePtr;
void insert(NodePtr &head, int value);

4

Linked list + function example
Write a function to calculate and return the length of a linked list.

Inputs: Head pointer (by value or by reference?)

Outputs: Length of list (what datatype?)

5

Caution: passing by reference vs value
Say we defined an insertion function as:

void insert(Node *head, int value); // pass head by value

When testing with the value 5 , this will work!

What about 9 ?

What about 12 ?

What about 0 ?

Pass-by-reference is only needed when head changes, but to keep your
function general, you should assume that it might change

6

Finding the proper position - v1
We need to find the node that comes before the insertion point

This means that we need to examine the next pointer of each node

Node *current = head;
while (current->next && current->next->data < value) {
 current = current->next;
}

Very important to check current->next before accessing current->next-

>data !

What if the list is empty?

What if the new node needs to be inserted at the head?

7

Finding the proper position - v2
Alternatively, we could use two pointers traversing in parallel:

Node *prev = NULL;
Node *current = head;
while (current && current->data < value) {
 prev = current;
 current = current->next;
}

Makes handling of special cases easier, but need to keep track of two pointers

Which is better? Whichever makes more sense to you!

8

Special cases

prev current Solution

NULL NULL Insert as first node in empty list

NULL not NULL Insert as first node in non-empty list

not NULL NULL Insert as last node in non-empty list

not NULL not NULL Insert in middle of list

For every linked list operation, think about the special cases!

9

 Linked List check-in 1/2
What am I forgetting in the following code? Assume that a list of Node s already exists

with a pointer to head defined.

A. head = temp;

B. delete temp;

C. temp = NULL ;

D. Both 1 and 2

E. Both 1 and 3

Node *temp = new Node;
temp->data = 0;
temp->next = head;

10

 Linked List check-in 2/2
What is the following code doing? Again, assume head is defined.

A. Inserting at the start of the list

B. Inserting at the end of the list

C. Inserting in the middle of the list

D. Finding a node

E. Deleting a node

Node *temp = new Node;
temp->data = 5;
temp->next = head->next;
head->next = temp;

11

Deleting a node
We need to:

Find the node to delete

Copy the address of the next node

Disconnect the node by changing the next pointer of the previous node

Free the memory using delete

More traversing!

More special cases!

12

Deleting a node - code example

Node *prev = NULL;
Node *current = head;
// Find the node to delete
while (current && current->data != value) {
 prev = current;
 current = current->next;
}

prev->next = current->next; // Disconnect the node
delete current; // Free the memory

What special cases do we need to consider?

13

Special cases for deletion

prev current Solution

NULL NULL Empty list, nothing to delete

NULL not NULL Delete the first node, update head

not NULL NULL End of list, nothing to delete

not NULL not NULL Delete within the list (could be last)

14

Linked list variations
By creating your own data structure, you get to define the rules!

Maybe you're doing a lot of adding/deleting at the end of the list, so you might want
to keep track of a pointer to the last node (the tail)

You might want to keep track of the length of the list or the sort order

Once you start getting fancy, you probably want to create a class to encapsulate
all of this information - we'll do this next week

First though, let's look at doubly linked lists

15

Doubly linked lists
So far we've only been able to travel one direction - the next node has no

knowledge of its predecessor

Solution: add a prev pointer to each node

 struct Node {
 int data;
 Node *next;
 Node *prev;
 };

Advantages: easier to delete nodes, easier to traverse backwards

Disadvantages: more memory, more complexity (two pointers to maintain)

16

Circularly linked lists
Instead of the last element pointing to NULL , it points to head

There is no real head anymore, but you still need to keep a pointer to
somewhere in the list

Only really useful when there's no start or end

Advantages: easier to traverse, no need to check for NULL

Disadvantages: more complexity, usually can't be empty

17

Lists of lists
You can have a linked list of linked lists!

Each node in the "outer" list is the head of another list

Example: list of courses, each course has a list of students

18

Cross-linked lists
Expanding on the previous example, consider the situation where:

Each student has a list of courses

Each class has a list of students

Each instructor has a list of courses

struct Student {
 string name;
 int id;
 Course *courses;
};

struct Course {
 string name;
 int number;
 Student *students;
 Instructor *instructor;
};

struct Instructor {
 string name;
 Course *courses;
};

COMP 2631 is all about various information structure
19

Object oriented programming preview
So far we've been implementing solutions in a procedural style

The object oriented approach is based on the idea that different objects can be
interacted with in a different way

You can sit on a chair

You can draw with a pen

You can (probably) pick up a chair and a pen

Can you draw with a chair?

In the OO approach, we can encapsulate data and functions in a class - an
abstract data type that defines how an object can be interacted with

20

Classes

A class is a blueprint for creating objects, much like how a struct is a blueprint

for creating data structures

struct Student {
 string name;
 int id;
};

class Student {
 string name;
 int number;

 void print();
};

A class is a type of object, just like int or string or Node

Member functions are accessed using . or -> just like member variables

In fact, in C++ a struct and a class are almost identical 21

Coming up next
Tutorial: Linked lists

Assignment 3 Linked lists

Next week: Classes and objects

Textbook Chapter 10.2-10.3

22

