
COMP 1633: Intro to CS II

Linked lists
Charlotte Curtis
March 11, 2024

Where we left off
Dynamic memory allocation

Assignment 2

Midterm

Textbook Section 9.2

Time *t = new Time;
t->hour = 5;
do_something_with_time(t);
delete t;

1

Today's topics
Intro to linked list structures

Nodes and node pointers

Building linked lists

Traversing linked lists

Linked Lists vs Arrays

Textbook Sections 13.1

2

Another list structure? Why?
Arrays, even dynamically allocated, are a fixed size and order

int *arr = new int[10];

Growing or shrinking an array is painful

int *new_arr = new int[20]; // allocate a new bigger array
for (int i = 0; i < 10; i++) { // copy the old array into the new one
 new_arr[i] = arr[i];
}

delete [] arr; // free the memory at the old array
arr = new_arr; // point the original memory to the new array
new_arr = NULL; // good practice to reset the temporary pointer

This is expensive, particularly with an array of structs
3

Linked lists overview
Instead of allocating a whole array, why not string together a bunch of pointers?

A linked list is a data structure where each element contains a value (or multiple
values), as well as a pointer to the next item in the list

The memory addresses of each item are random, and that's okay!

To accomplish this, we need a struct that contains a value and a pointer to the
next item in the list

struct Node {
 <data type> data;
 Node *next;
};

4

That Node structure looks funky
Node is a struct with a field that's a pointer to another Node

This is a self-referential structure. The name Node is common for linked lists, but
we could have named it anything, for example:

struct Person {
 string name;
 Person *spouse;
};

Why is spouse a pointer instead of just a Person ?

Yes, that's a std::string - you can use them in assignment 3!

5

Pointers so far
So far we've learned how to:

Allocate memory on the stack by declaring variables

Allocate memory on the heap by using new

Define pointers to named memory addresses (on the stack)

Define pointers to unnamed memory addresses (on the heap)

Problem: we still don't get "unlimited" memory because we need to associate
a named variable with each memory address

6

Linked Lists
We only need to declare one variable to get started

Node *head = NULL;

We then use the self-referential pointer to link to the next chunk of data

head = new Node;
head->data = 5;
head->next = NULL;

We can add or remove items from the list dynamically, and only need to keep track

of the head pointer

Concept demo time

7

Starting a linked list
For this simple Node struct (which only holds an int):

struct Node {
 int data;
 Node *next;
};

We start with the head pointer:

Node *head = NULL;

This is an empty list

All we've done so far is allocate space for a pointer to a Node

Don't lose track of the head pointer!

8

Building the list
Unlike arrays, list nodes need to be allocated one at a time

head = new Node; // allocate a new node on the heap
head->data = 7; // assign its value
head->next = NULL; // point to the next one in the list

The last node of the list should always point to NULL

This is now a singleton list, where the start and end are the same item

We can add another item to the end by allocating the next pointer:

head->next = new Node;
head->next->data = 10;
head->next->next = NULL;

9

Adding to the front
We can add a third node to the front of the list, but be careful!

head = new Node;
head->data = 1;
head->next = ???; // uh oh, we lost the old head!

We should instead declare a temporary pointer for the new node:

Node *temp = new Node;
temp->data = 1;
temp->next = head;
head = temp; // reassign head to the address of temp

Question: should we delete temp ?

10

Adding to the middle (inserting a node)
At this point we have a list with 3 nodes: 1 -> 7 -> 10

Let's add a 5 between 1 and 7

Once more, we'll need a temporary pointer for the new node:

Node *temp = new Node;
temp->data = 5;
temp->next = head->next; // steal the pointer to 7
head->next = temp; // point 1 to 5

Adding to the middle is more expensive as it means traversing the list

11

 Linked list check-in 1/2
We can't just dereference head + 1 to get the next item in the list because...

A. The head pointer is a NULL pointer

B. The linked list is not contiguous in memory

C. The head pointer does not point to the first item in the list

D. The memory allocated to head is not the size of a Node

12

 Linked list check-in 2/2
next needs to be a Node * and not a Node because...

A. A struct cannot be a member of another struct

B. All struct members must be pointers

C. The memory would be allocated on the stack

D. The memory allocation would be recursive

13

Basic list traversal
Pointer arithmetic only works because arrays are contiguous in memory

Since a list is only defined by its head pointer, we need to traverse the list to find
any other item - we can't just say head + 1 or head[1]

The basic algorithm is something like:

set travelling pointer to head
while travelling pointer points to something
 do something with the current node
 advance the travelling pointer to the next node

"Do something" can be printing, searching, summing, etc

14

Traversing a list
In C++ syntax:

Node *current = head;
while (current) { // or while (current != NULL)
 // do something with current->data
 current = current->next;
}

This is a sentinel loop that stops when current is NULL
As always, the LCV update must be the last line of the loop body

Very important that the last node point to NULL !

current does not allocate new memory (other than for the pointer itself)

15

Inserting a node
Basic approach:

Find the proper position for insertion (We'll deal with this later)

Allocate a new node

Steal the next pointer from the previous node

Assign the previous node's next pointer to the new node

Suppose the list already has the values 1 -> 5 -> 7 -> 10 . We want to
add the value 6 and keep the list sorted.

16

Handling special cases
We want to insert a node at the "proper" position, which may be:

At the beginning of the list

In the middle of the list

At the end of the list

In an empty list

Which of these need special handling?
Next lecture we'll look at some common approaches

17

Arrays vs Linked Lists
Arrays Linked Lists

Contains only data Contains data and pointers (more memory)

Fixed number of elements Variable number of nodes

Minimum size is 1 Minimum size is 0

Supports random access Must traverse to find an element

Insertion/deletion requires shifting Insertion/deletion is easy

Easiest insertion/deletion at the end Easiest insertion/deletion at the front

Need to know the length and fill level End is marked by NULL

18

Coming up next
Lab tomorrow: continue dynamic allocation lab

Lecture: More linked lists

Assignment 3: Linked lists

Textbook Chapter 13

19

