
COMP 1633: Intro to CS II
Dynamic Allocation and Midterm Review

Charlotte Curtis
March 4, 2024

Where we left off
Pointers and arrays

Pointers and structures

Pointers and functions

typedef

Preview of dynamic memory

allocation

Textbook Sections 9.1, 9.2

Time t;
Time *pt = &t;

t.hour = 5;
t.minute = 0;
cout << pt->hour << ':'
 << pt->minute << endl;

1

Today's topics
Dynamic memory allocation

Midterm review exercise

Textbook Sections 9.2, 6.1

2

The heap and the stack
There are two accessible areas of memory for a program:

The stack is used for local variables and function calls

The heap (or "freestore") is used for dynamic memory allocation

3

The new operator
To create a variable on the heap, use the new operator:

int x = 0; // x is a named memory location on the stack
int *ptr; // memory for pointer is on the stack
ptr = new int; // what it points at is on the heap

By using new , we tell C++ that we want the memory to be allocated on the heap

The only way to access the value at ptr is through the pointer

What if we do the following?

ptr = &x;

If you lose the address of the pointer, your integer is lost and gone forever!

4

new structures
Creating an int on the heap is a bit silly, they don't take up much space anyway

More useful for a struct :

Applicant *a = new Applicant; // Allocates all 19 fields on the heap

Recall the pointer + struct syntax:

strcpy(a->name, "Aaron Grimm");
cout << a->name << endl;

5

Every new needs a delete
After allocating space on the heap (for an Applicant or an int or anything

else), you should free the memory using delete when you're done with it

This prevents memory leaks

Syntax:

delete a;

where delete is an operator and the operand is the pointer variable name

Caution: this recycles the memory, but does not remove the pointer!
Good idea to reset the pointer to NULL after a delete

6

Summary of new and delete

new delete

Allocates memory on the heap Returns memory to the heap

Returns a pointer to the allocated memory Does not modify the pointer address

Risks:

Memory leaks - forgetting to delete a pointer

Dangling pointers - delete ing a pointer and then trying to use it

Double delete - delete ing a pointer twice

delete ing a pointer that was not created with new

7

Allocating variable sized arrays
To create a variable sized array, we need to use new :

int n;
cin >> n;
int *arr = new int[n];

This allocates contiguous memory on the heap for n integers

We can then use the array the way we normally would:

arr[0] = 5;
a_func_that_uses_an_array(arr, n);

delete ing an array needs a bit of extra syntax:

delete [] arr;

8

Static vs dynamically allocated arrays

Static Dynamic

Size must be known at compile time Size can be variable

Memory allocated on the stack Memory allocated on the heap

Memory freed automatically when variable
goes out of scope

Must be manually delete d when
you're done with it

Limited by stack size Limited by system memory

Contiguous memory Contiguous memory

9

Midterm review exercise
Pub trivia style! Answers are now posted.

Groups of 3-4

I'll read questions out loud, you have 2 minutes per question to discuss and write

down your answers.

Do not shout out answers - write them down and we'll peer mark at the end.

Q5:

int x = 5;
int *p1;
int *p2 = &x;

Q9:

int nums[8], n;
cin >> n;
for (int i = 0; i < n; i++) {
 cin >> nums[i];
}

10

file:///res/midterm_trivia

Coming up next
Tomorrow's lab: drop in help/study session

Midterm on Wednesday

Thursday's lab: Dynamic allocation and valgrind

11

