
COMP 1633: Intro to CS II

Pointers Continued
Charlotte Curtis

February 28, 2024

Where we left off
Intro to pointers

Assigning and dereferencing pointers

Textbook Chapter 9ish

int x = 5;
int *ptr = &x;

*ptr = 10;
cout << "x: " << x << endl;

1

Today's topics
Using pointers

Pointers and const

Pointers and structures

Pointers and arrays

... you get the point

Textbook Chapter 9ish, still

2

Pointers and const
const makes a variable read-only

const int NUM_STUDENTS = 20;
NUM_STUDENTS = 21; // error! Can't change a const!

What happens with const and pointers?

int x;
int y = 37;
const int *pci = &y; // pointer to a const int
int * const cpi = &y; // const pointer to an int
const int * const cpci = &y; // const pointer to a const int

3

Things are getting rather const -y
A pointer to a constant is a pointer that points to a constant value

The value can't be changed through the pointer

The pointer can be changed to point to a different value

Whatever it points to becomes read-only

A constant pointer is like a regular const variable
It must be initialized when declared, and can't be reassigned

However, the value at the address it points to can be changed

A constant pointer to a constant combines the two

4

The same info in table form

Declaration Can change value Can change pointer

int *ptr Yes Yes

const int *ptr No Yes

int * const ptr Yes No

const int *const ptr No No

All this gets rather confusing

5

Pointers and Arrays

Recall that an array is a contiguous block of memory

When arrays are declared and space is allocated, the address of the first
element is associated with the name of the array, e.g.:

char A[10]
strcpy(A, "Hello");

Index 0 1 2 3 4 5 6 7 8 9

Value H e l l o \0 ? ? ? ?

So... if A is the address of the first element, can we assign it to a pointer?

6

Pointers and Arrays

char A[10] = "Hello";
char *cptr = A; // no &, because A is already an address

cptr now points to the first element of A

What if I modify *cptr ?

*cptr = 'J';

What if I increment cptr ?

cptr++; // add one sizeof(type) to the address

Pointers can be used to iterate through arrays!
7

Side tangent: Pointer arithmetic
Array indexing using [] is "syntactic sugar" for pointer arithmetic

Given the following declaration:

int arr[10];

These operations are identical:

arr[0] = 5;
*arr = 5;

Or, more generally, for an integral index i :

arr[i] = 5;
*(arr + i) = 5;

8

Pointers and Structures
Recall that a structure is a collection of variables that could be different types

struct Time {
 int hour;
 int minute;
};

You can access individual fields with . syntax:

Time t;
t.hour = 5; // it's 5 o'clock somewhere

And just like anything else, you can declare a pointer to a structure:

Time *tptr = &t;

9

Pointers and Structures
To access fields, you first need to dereference the pointer, then use . :

(*tptr).hour = 5;

This is common enough and annoying enough that there's a shorthand:

tptr->hour = 5;

This is called the arrow operator and is only used to access members of a

structure or class via a pointer

tptr->hour++; // now it's 6 o'clock
cout << tptr->hour << ':' << tptr->min << endl;

10

 Pointer check-in 1/2
Which of the following operators can not be used with pointers?

A. &

B. *

C. ++

D. []

E. /

Edit Feb 29: Originally this slide had a mistake and all the operators were valid! 11

 Pointer check-in 2/2
Which statements are true about the following code snippet? Select all that apply.

A. x is a pointer to an int

B. p points to x

C. p could be used to change the value

of x

D. p could be reassigned to point to y

E. The const has no effect

int x = 0;
int y = -1;
const int *p = &x;
cout << "x is " << x
 << " and y is " << y << endl;

12

Pointers and functions
A pointer variable is like any other variable...

It can be passed to a function, by value or by reference

It can be returned from a function

Things get funky passing pointers to functions:

void foo(int *iptr) {
 int x = 42;
 iptr = &x;
}

int main() {
 int *iptr = NULL;
 foo(iptr);
 cout << *iptr << endl; // what happens here?
}

13

Passing pointers by value
Recall that when you pass a variable by value, a copy is made

void foo(int *ptr); // Pointer is passed by value

The function receives an address and assigns it to a local pointer variable

The pointer can change the value at that address in the calling scope, but it can't

change what the pointer points to

Kinda confusing, let's visualize

14

https://pythontutor.com/render.html#code=void%20foo%28int%20*ptr%29%3B%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20x%20%3D%2042%3B%0A%20%20int%20*px%20%3D%20%26x%3B%0A%20%20%0A%20%20foo%28px%29%3B%0A%20%20foo%28%26x%29%3B%20//%20can%20also%20pass%20an%20address%20directly%0A%20%20%0A%20%20return%200%3B%0A%7D%0A%0Avoid%20foo%28int%20*ptr%29%20%7B%0A%20%20int%20a%20%3D%2010%3B%0A%20%20%28*ptr%29%2B%2B%3B%0A%20%20%0A%20%20ptr%20%3D%20%26a%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=16&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

Passing by reference
If you want to change what the pointer points to, you need to pass it by reference:

void foo(int *&ptr); // Pointer is passed by reference

Read right-to-left: int *&ptr means "reference to pointer to int "

Caution: The new address must exist in the calling scope

Remember that local variables disappear when the function returns

void do_stuff(int *ptr, int n) {
 ptr = &n;
}

15

Protecting what a pointer points to
Passing a pointer by value still allows modifying the value at that address

void foo(int *ptr) {
 (*ptr)++;
}

How do we protect against modifying values? const , of course!

void foo(const int *ptr);

We've done this before with arrays:

void foo(const int arr[]);

... and in fact this is exactly the same thing!

16

What can be passed as a pointer?
Given the following function prototypes and variable declarations:

void foo(int *ptr);
void bar(int *&ptr);

int x = 0;
int *iptr = &x;

Which of the following are valid?

1. foo(5);

2. foo(&5);

3. foo(&x);

4. foo(iptr);

5. foo(&iptr);

6. bar(5);

7. bar(&5);

8. bar(&x);

9. bar(iptr);

10. bar(&iptr);

17

Side tangent: typedef
typedef is a keyword that allows you to create aliases for types

Syntax:

typedef <type> <alias>;

Example:

typedef int * IntPtr;
IntPtr iptr = NULL;
void bar(IntPtr &ptr); // Can't mess up the order of & and * now

This is recommended in our textbook, but it's a somewhat contentious practice -
feel free to experiment and use what makes sense to you

18

https://www.kernel.org/doc/html/latest/process/coding-style.html#typedefs

Returning a pointer
Just like any other variable, a pointer can be returned from a function

But remember that local variables disappear when the function returns!

The return value must point to something that still exists in the calling scope

Example: Write a function with the following prototype that returns a pointer to the

largest element in an array

int *max(int arr[], int n);

19

Dynamic allocation preview
It's annoying that we need to guess how much memory we need at compile-time

char sentence[256]; // should be enough for a sentence, right?

What if we want to allocate memory as needed?

What if we want to allocate memory that persists after the function returns?

Dynamic memory allocation to the rescue!

20

The heap and the stack
There are two accessible areas of memory for a program:

The stack is used for local variables and function calls

The heap (or "freestore") is used for dynamic memory allocation

21

The new operator
To create a variable on the heap, use the new operator:

int *ptr; // memory for pointer is on the stack
ptr = new int; // what it points at is on the heap

This does the following:

1. Allocates enough memory on the heap for an int

2. Returns the address of the allocated memory

Some things to be cautious of:

The allocated int can only be accessed through ptr !

After you're done with it, you must delete it to free the memory
22

Coming up next
Dynamic memory allocation

Midterm!

Textbook Section 9.2

23

