COMP 1633: Introto CS |l

Pointers Continued

Charlotte Curtis
February 28, 2024

Where we left off

e Intro to pointers int x = 5;

e Assigning and dereferencing pointers 1"t TPtr = &X;

*ptr = 10,
Textbook Chapter 9ish cout << "x: " << x << endl;

Today's topics

e Using pointers

Pointers and const

Pointers and structures

Pointers and arrays

.. you get the point

Textbook Chapter 9ish, still

Pointers and const

e const makes a variable read-only

const 1nt NUM_STUDENTS = 20;
NUM_STUDENTS = 21; // error! Can't change a const!

e What happens with const and pointers?

int x;

int y = 37;

const int *pci = &y; // pointer to a const int

int * const cpli = &y; // const polinter to an 1int

const int * const cpci = &y; // const pointer to a const int

Things are getting rather const -y

e A pointer to a constant is a pointer that points to a constant value
o The value can't be changed through the pointer

o The pointer can be changed to point to a different value
o Whatever it points to becomes read-only

e A constant pointer is like a regular const variable
o It must be initialized when declared, and can't be reassigned

o However, the value at the address it points to can be changed

e A constant pointer to a constant combines the two

The same Info In table form

Declaration Can change value Can change pointer
int *ptr Yes Yes
const int *ptr No Yes
int * const ptr Yes NoO

const int *const ptr NoO

All this gets rather confusing

No

Pointers and Arrays

e Recall that an array is a contiguous block of memory

 When arrays are declared and space is allocated, the address of the first
element is associated with the name of the array, e.g.:

char A[10]
strcpy(A, "Hello");

Index | 0/1/2|3/4|/5 |6|7 /8|9

Value |Hlel|l|1l|o|\O|?2|?2|?2]|°?

e So... If A Isthe address of the first element, can we assign it to a pointer?

Pointers and Arrays

char A[10]
char *cptr

"Hello";
A; // no &, because A is already an address

e cptr now points to the first element of A
e What if | modify *cptr ?

*cptr = 'J3%,

e What if | Increment cptr ?

cptr++; // add one sizeof(type) to the address

Pointers can be used to iterate through arrays!

Side tangent: Pointer arithmetic

Array indexing using [] Is "syntactic sugar" for pointer arithmetic

Given the following declaration:

int arr[10];

These operations are identical:

arr[0]

:5,
*arr = 5;

Or, more generally, for an integral index i :

arr[i] = 5;
*(arr + 1) = 5;

Pointers and Structures

e Recall that a structure is a collection of variables that could be different types

struct Time {
int hour;
int minute;

1

e You can access individual fields with . syntax:

Time t;
t.hour = 5; // it's 5 o'clock somewhere

e And just like anything else, you can declare a pointer to a structure:

Time *tptr = &t;

Pointers and Structures

e To access fields, you first need to dereference the pointer, then use

(*tptr).hour = 5;

e This is common enough and annoying enough that there's a shorthand:

tptr->hour = 5;

e This is called the arrow operator and is only used to access members of a
structure or class via a pointer

tptr->hour++; // now it's 6 o'clock
cout << tptr->hour << ':' << tptr->min << endl;

10

© Pointer check-in 1/2

Which of the following operators can not be used with pointers?

A &

*

e

m U O W

Edit Feb 29: Originally this slide had a mistake and all the operators were valid!

11

© Pointer check-in 2/2

Which statements are true about the following code snippet? Select all that apply.

A. x Is apointerto an int

B. p pointsto x int x = 9

C. p could be used to change the value 1Nt ¥y = -1;
const int *p = &x;
of [x cout << "x is " << X

' : << " and is " << y << endl;
D. p could be reassigned to pointto y y 1 y

E. The const has no effect

12

Pointers and functions

e A pointer variable is like any other variable...
o It can be passed to a function, by value or by reference

o It can be returned from a function
e Things get funky passing pointers to functions:

void foo(int *iptr) {
int x = 42;
iptr = &x;

}

int main() {
int *iptr = NULL;
foo(iptr);
cout << *iptr << endl; // what happens here?

13

Passing pointers by value

e Recall that when you pass a variable by value, a copy is made

void foo(int *ptr); // Pointer 1is passed by value

e The function receives an address and assigns it to a local pointer variable

e The pointer can change the value at that address in the calling scope, but it can't
change what the pointer points to

Kinda confusing, let's visualize

14

https://pythontutor.com/render.html#code=void%20foo%28int%20*ptr%29%3B%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20x%20%3D%2042%3B%0A%20%20int%20*px%20%3D%20%26x%3B%0A%20%20%0A%20%20foo%28px%29%3B%0A%20%20foo%28%26x%29%3B%20//%20can%20also%20pass%20an%20address%20directly%0A%20%20%0A%20%20return%200%3B%0A%7D%0A%0Avoid%20foo%28int%20*ptr%29%20%7B%0A%20%20int%20a%20%3D%2010%3B%0A%20%20%28*ptr%29%2B%2B%3B%0A%20%20%0A%20%20ptr%20%3D%20%26a%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=16&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

Passing by reference

e If you want to change what the pointer points to, you need to pass it by reference:

void foo(int *&ptr),; // Pointer is passed by reference

Read right-to-left. int *&ptr means "reference to pointer to int "

e Caution: The new address must exist in the calling scope
e Remember that local variables disappear when the function returns

void do_stuff(int *ptr, int n) {
ptr = &n;
b

15

Protecting what a pointer points to

e Passing a pointer by value still allows modifying the value at that address

void foo(int *ptr) {
("ptr)++;
)

 How do we protect against modifying values? const , of course!
void foo(const int *ptr);

e \We've done this before with arrays:

void foo(const int arr[]);

... and in fact this is exactly the same thing!

16

What can be passed as a pointer?

Given the following function prototypes and variable declarations:

void foo(int *ptr); int x = 0,
void bar(int *&ptr); int *iptr = &x;

Which of the following are valid?

1. foo(5); 6. bar(5);

2. foo(&5); /. bar(&5);

3. foo(&x); 8. bar(&x);

4. foo(iptr); 9. bar(iptr);
5. foo(&iptr); 10. bar(&iptr);

Side tangent: typedef

e typedef is a keyword that allows you to create aliases for types
e Syntax:

typedef <type> <alias>;

Example:

typedef int * IntPtr;
IntPtr iptr = NULL;
void bar(IntPtr &ptr); // Can't mess up the order of & and * now

This is recommended in our textbook, but it's a somewhat contentious practice -
feel free to experiment and use what makes sense to you

18

https://www.kernel.org/doc/html/latest/process/coding-style.html#typedefs

Returning a pointer

Just like any other variable, a pointer can be returned from a function

But remember that local variables disappear when the function returns!

The return value must point to something that still exists in the calling scope

Example: Write a function with the following prototype that returns a pointer to the
largest element in an array

int *max(int arr[], int n);

19

Dynamic allocation preview

e It's annoying that we need to guess how much memory we need at compile-time

char sentence[256]; // should be enough for a sentence, right?

e What if we want to allocate memory as needed?
e What if we want to allocate memory that persists after the function returns?

e Dynamic memory allocation to the rescue!

20

The heap and the stack

e There are two accessible areas of memory for a program:
o The stack is used for local variables and function calls

o The heap (or "freestore") is used for dynamic memory allocation

21

The new operator

To create a variable on the heap, use the new operator:

int *ptr; // memory for pointer 1s on the stack
ptr = new int; // what it points at 1is on the heap

This does the following:

1. Allocates enough memory on the heap for an int

2. Returns the address of the allocated memory
Some things to be cautious of:

e The allocated int can only be accessed through ptr !

o After you're done with it, you must delete it to free the memory

22

Coming up next

e Dynamic memory allocation
e Midterm! 2

Textbook Section 9.2

23

