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Where we left off
Intro to pointers

Assigning and dereferencing pointers

Textbook Chapter 9ish

int x = 5;
int *ptr = &x;

*ptr = 10;
cout << "x: " << x << endl;
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Today's topics
Using pointers

Pointers and const

Pointers and structures

Pointers and arrays

... you get the point

Textbook Chapter 9ish, still
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Pointers and const
const  makes a variable read-only

const int NUM_STUDENTS = 20;
NUM_STUDENTS = 21; // error! Can't change a const!

What happens with const  and pointers?

int x;
int y = 37;
const int *pci = &y; // pointer to a const int
int * const cpi = &y; // const pointer to an int
const int * const cpci = &y; // const pointer to a const int
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Things are getting rather const -y
A pointer to a constant is a pointer that points to a constant value

The value can't be changed through the pointer

The pointer can be changed to point to a different value

Whatever it points to becomes read-only

A constant pointer is like a regular const  variable
It must be initialized when declared, and can't be reassigned

However, the value at the address it points to can be changed

A constant pointer to a constant combines the two
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The same info in table form

Declaration Can change value Can change pointer

int *ptr Yes Yes

const int *ptr No Yes

int * const ptr Yes No

const int *const ptr No No

All this gets rather confusing
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Pointers and Arrays

Recall that an array is a contiguous block of memory

When arrays are declared and space is allocated, the address of the first
element is associated with the name of the array, e.g.:

char A[10]
strcpy(A, "Hello");

Index 0 1 2 3 4 5 6 7 8 9

Value H e l l o \0 ? ? ? ?

So... if A  is the address of the first element, can we assign it to a pointer?
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Pointers and Arrays

char A[10] = "Hello";
char *cptr = A; // no &, because A is already an address

cptr  now points to the first element of A

What if I modify *cptr ?

*cptr = 'J';

What if I increment cptr ?

cptr++; // add one sizeof(type) to the address

Pointers can be used to iterate through arrays!
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Side tangent: Pointer arithmetic
Array indexing using []  is "syntactic sugar" for pointer arithmetic

Given the following declaration:

int arr[10];

These operations are identical:

arr[0] = 5;
*arr = 5;

Or, more generally, for an integral index i :

arr[i] = 5;
*(arr + i) = 5;
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Pointers and Structures
Recall that a structure is a collection of variables that could be different types

struct Time {
    int hour;
    int minute;
};

You can access individual fields with .  syntax:

Time t;
t.hour = 5; // it's 5 o'clock somewhere

And just like anything else, you can declare a pointer to a structure:

Time *tptr = &t;
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Pointers and Structures
To access fields, you first need to dereference the pointer, then use . :

(*tptr).hour = 5;

This is common enough and annoying enough that there's a shorthand:

tptr->hour = 5;

This is called the arrow operator and is only used to access members of a

structure or class via a pointer

tptr->hour++; // now it's 6 o'clock
cout << tptr->hour << ':' << tptr->min << endl; 
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 Pointer check-in 1/2
Which of the following operators can not be used with pointers?

A. &

B. *

C. ++

D. []

E. /

Edit Feb 29: Originally this slide had a mistake and all the operators were valid! 11



 Pointer check-in 2/2
Which statements are true about the following code snippet? Select all that apply.

A. x  is a pointer to an int

B. p  points to x

C. p  could be used to change the value

of x

D. p  could be reassigned to point to y

E. The const  has no effect

int x = 0;
int y = -1;
const int *p = &x;
cout << "x is " << x
     << " and y is " << y << endl;
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Pointers and functions
A pointer variable is like any other variable...

It can be passed to a function, by value or by reference

It can be returned from a function

Things get funky passing pointers to functions:

void foo(int *iptr) {
    int x = 42;
    iptr = &x;
}

int main() {
    int *iptr = NULL;
    foo(iptr);
    cout << *iptr << endl; // what happens here?
}
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Passing pointers by value
Recall that when you pass a variable by value, a copy is made

void foo(int *ptr); // Pointer is passed by value

The function receives an address and assigns it to a local pointer variable

The pointer can change the value at that address in the calling scope, but it can't

change what the pointer points to

Kinda confusing, let's visualize
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Passing by reference
If you want to change what the pointer points to, you need to pass it by reference:

void foo(int *&ptr); // Pointer is passed by reference

Read right-to-left: int *&ptr  means "reference to pointer to int "

Caution: The new address must exist in the calling scope

Remember that local variables disappear when the function returns

void do_stuff(int *ptr, int n) {
    ptr = &n;
}
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Protecting what a pointer points to
Passing a pointer by value still allows modifying the value at that address

void foo(int *ptr) {
    (*ptr)++;
}

How do we protect against modifying values? const , of course!

void foo(const int *ptr);

We've done this before with arrays:

void foo(const int arr[]);

... and in fact this is exactly the same thing!
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What can be passed as a pointer?
Given the following function prototypes and variable declarations:

void foo(int *ptr);
void bar(int *&ptr);

int x = 0;
int *iptr = &x;

Which of the following are valid?

1. foo(5);

2. foo(&5);

3. foo(&x);

4. foo(iptr);

5. foo(&iptr);

6. bar(5);

7. bar(&5);

8. bar(&x);

9. bar(iptr);

10. bar(&iptr);
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Side tangent: typedef
typedef  is a keyword that allows you to create aliases for types

Syntax:

typedef <type> <alias>;

Example:

typedef int * IntPtr;
IntPtr iptr = NULL;
void bar(IntPtr &ptr); // Can't mess up the order of & and * now

This is recommended in our textbook, but it's a somewhat contentious practice -
feel free to experiment and use what makes sense to you
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https://www.kernel.org/doc/html/latest/process/coding-style.html#typedefs


Returning a pointer
Just like any other variable, a pointer can be returned from a function

But remember that local variables disappear when the function returns!

The return value must point to something that still exists in the calling scope

Example: Write a function with the following prototype that returns a pointer to the

largest element in an array

int *max(int arr[], int n);
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Dynamic allocation preview
It's annoying that we need to guess how much memory we need at compile-time

char sentence[256]; // should be enough for a sentence, right?

What if we want to allocate memory as needed?

What if we want to allocate memory that persists after the function returns?

Dynamic memory allocation to the rescue!
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The heap and the stack
There are two accessible areas of memory for a program:

The stack is used for local variables and function calls

The heap (or "freestore") is used for dynamic memory allocation
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The new  operator
To create a variable on the heap, use the new  operator:

int *ptr; // memory for pointer is on the stack
ptr = new int; // what it points at is on the heap

This does the following:

1. Allocates enough memory on the heap for an int

2. Returns the address of the allocated memory

Some things to be cautious of:

The allocated int  can only be accessed through ptr !

After you're done with it, you must delete  it to free the memory
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Coming up next
Dynamic memory allocation

Midterm! 

Textbook Section 9.2
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