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Where we left off
Reading and writing files

Stream behaviour

Command line arguments

Textbook Chapter 6, plus off-
book

#include <fstream>

int main(int argc, char *argv[]) {
    ofstream output(argv[1]);
    output << "Writing to a file!\n";
    output.close();
    return 0;
}
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Today's topics
A bit of midterm info

Intro to pointers

Assigning and dereferencing pointers

Textbook Chapter 9, kinda
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Midterm Info
Topics up to and including Pointers (this week)

Format: multiple choice, short answer, tracing, coding

No cheat sheet, but I will provide the operator precedence table

Expect coding questions similar to assignments 1 and 2, plus conceptional

questions about memory allocation
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https://en.cppreference.com/w/cpp/language/operator_precedence


That mysterious issue from last lecture
In the copy_and_meow  function, I had the following loop:

char line[256];
while (in.getline(line, 256)) {
     str_replace(line, "now", "meow");
     out << line << endl;
}

Turns out that my text file had a line longer than 256 characters

I RTFM and realized that while the first 255 chars were read into line , the failbit
was set on in  and the loop never executed

Lesson: choose your buffer size wisely!

4

https://en.cppreference.com/w/cpp/io/basic_istream/getline


And now, pointers!
Pointers are a powerful and confusing feature of C++

They allow for dynamically sized arrays, linked data structures, and more

It's also how pass-by-reference works in C++

We've been using pointers already!
void add_one(int arr[], int size)

Passing an array to this function passes a pointer to the first element of the
array - this is why putting a size in the []  doesn't matter

"It's easier to give someone your address than to make a copy of your house"
-- Something I read somewhere, probably Stack Overflow
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Memory and Addresses
Memory is a sequence of bytes (8 bits),

the smallest addressable unit

Declaring a variable allocates enough

memory to store the value, and also allows
us to reference the location by name

The address of a variable is the location in

memory where it is stored
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Allocating Memory:
Example

int main() {
    int i = 42;
    int j;
    char c = 'K';
    double d = 3.14159;
    // ...
    return 0;
}

The memory addresses are integers,
though usually hexadecimal (base
16)
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The pointer type
A pointer is a variable that stores the

address of another variable

The value of a pointer doesn't make sense

on its own

Memory addresses are integers, but
pointers are a specific type, such as:

Pointer to an int

Pointer to a char

Pointer to a BillInfo  struct

https://xkcd.com/138 8
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Declaring pointers
Passing by reference uses & , but this is the address-of operator

int &x = y;  is a compile time error

The actual syntax:

type *variable_name;

where type  is the type of the variable being pointed to

Example:

int x; // a normal integer variable
int *p; // a pointer to an integer
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The *  is not part of the type!
While C++ allows the *  to be placed anywhere between the type and the variable, you

have to be very careful:

char *cptr; // pointer to a char
char* cptr2; // also a pointer to a char

int *ptr1, *ptr2; // Two pointers to ints
int* ptr3, ptr4; // ptr3 is a pointer to an int, ptr4 is an int

Keeping the *  next to the variable name helps to keep things straight
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What happens when we declare a pointer?
Like other variable declarations:

Memory is allocated

The value is uninitialized (random garbage)

Regardless of the type, memory allocated to a pointer is the size of an int

The random garbage may or may not point to a valid memory address

When a program runs, it is given its own isolated memory space. While you
might get segmentation faults by accessing invalid memory locations, you
won't bork your system or break another program.
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Side tangent: Segmentation fault
A segmentation fault or "segfault" might happen if you:

Try to access memory that doesn't belong to you

Try to write to read-only memory

Try to get the value of unallocated memory

Basically, any time you mess with memory that isn't your own, you might see:

Segmentation fault (core dumped)

"Core dump" is a reference to old-school magnetic memory cores

You can backtrace in gdb  to find the offending code
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Initializing pointers
We can initialize pointers to point to a specific memory address:

int *p = 0x7ffeeb6b4a4c;

But this is pretty much useless

The only useful predefined pointer value is NULL , which is falsy

int *iptr = NULL;
char *cptr = NULL;

In C++ 11, NULL  was replaced with nullptr  to avoid some ambiguity
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The &  operator
We've already seen the address-of
operator, used for pass-by-reference

Recalling the diagram to the right:
&i  evaluates to 000

&j  evaluates to 004

&c  evaluates to 008

&d  evaluates to 012

We now have valid addresses that can be
assigned to pointer variables!
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Assigning addresses to pointers
Consider the following:

int i = 42;
int *iptr = &i;
iptr = &j;

What just happened??

Let's draw a diagram!

Now add on:

int *iptr2;
iptr2 = iptr;
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Dereferencing pointers
Okay, we've declared and initialized pointers, but who cares?

What we really want to manipulate is the value at that memory location

The dereference operator *  makes this happen

int i = 42;
int *iptr = &i;
cout << *iptr << endl; // prints 42
*iptr = 0;
cout << i << endl; // prints 0

This is the same symbol used in the declaration, but it's a different operator!

&  gives the address, *  gives the value - kind of like the inverse of each other
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Some Pointer Gotchas
Dereferencing NULL  is undefined behavior

Good idea to check for NULL  before dereferencing

if (iptr) { ... }

Beware the precedence and associativity

Most operators are left-to-right, but *  is right-to-left

This means that *iptr++  is equivalent to *(iptr++)

This is not the same as (*iptr)++ !

++  on a pointer is valid - it increments the address by the size of the type
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https://en.cppreference.com/w/cpp/language/operator_precedence


Syntax Soup: exercise
Given the following, fill in the table to the right:

int x = 24;
int *iptr = &x;
char c;
char *cptr = &c;

Expression Type Expression Type

x c

iptr cptr

&x &c

*iptr *cptr

Take a few minutes to try to answer this (in groups or independently), then
we'll go through the solution together
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Coming up next
Lab tomorrow: pointers tutorial

Lecture: pointers + arrays, functions, and structures

Assignment 2 due Friday, March 1

Midterm: Wednesday, March 6 
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