
COMP 1633: Intro to CS II

Pointers
Charlotte Curtis

February 26, 2024

Where we left off
Reading and writing files

Stream behaviour

Command line arguments

Textbook Chapter 6, plus off-
book

#include <fstream>

int main(int argc, char *argv[]) {
 ofstream output(argv[1]);
 output << "Writing to a file!\n";
 output.close();
 return 0;
}

1

Today's topics
A bit of midterm info

Intro to pointers

Assigning and dereferencing pointers

Textbook Chapter 9, kinda

2

Midterm Info
Topics up to and including Pointers (this week)

Format: multiple choice, short answer, tracing, coding

No cheat sheet, but I will provide the operator precedence table

Expect coding questions similar to assignments 1 and 2, plus conceptional

questions about memory allocation

3

https://en.cppreference.com/w/cpp/language/operator_precedence

That mysterious issue from last lecture
In the copy_and_meow function, I had the following loop:

char line[256];
while (in.getline(line, 256)) {
 str_replace(line, "now", "meow");
 out << line << endl;
}

Turns out that my text file had a line longer than 256 characters

I RTFM and realized that while the first 255 chars were read into line , the failbit
was set on in and the loop never executed

Lesson: choose your buffer size wisely!

4

https://en.cppreference.com/w/cpp/io/basic_istream/getline

And now, pointers!
Pointers are a powerful and confusing feature of C++

They allow for dynamically sized arrays, linked data structures, and more

It's also how pass-by-reference works in C++

We've been using pointers already!
void add_one(int arr[], int size)

Passing an array to this function passes a pointer to the first element of the
array - this is why putting a size in the [] doesn't matter

"It's easier to give someone your address than to make a copy of your house"
-- Something I read somewhere, probably Stack Overflow

5

Memory and Addresses
Memory is a sequence of bytes (8 bits),

the smallest addressable unit

Declaring a variable allocates enough

memory to store the value, and also allows
us to reference the location by name

The address of a variable is the location in

memory where it is stored

Image courtesy of Paul Pospisil 6

Allocating Memory:
Example

int main() {
 int i = 42;
 int j;
 char c = 'K';
 double d = 3.14159;
 // ...
 return 0;
}

The memory addresses are integers,
though usually hexadecimal (base
16)

Image courtesy of Paul Pospisil 7

The pointer type
A pointer is a variable that stores the

address of another variable

The value of a pointer doesn't make sense

on its own

Memory addresses are integers, but
pointers are a specific type, such as:

Pointer to an int

Pointer to a char

Pointer to a BillInfo struct

https://xkcd.com/138 8

https://xkcd.com/138

Declaring pointers
Passing by reference uses & , but this is the address-of operator

int &x = y; is a compile time error

The actual syntax:

type *variable_name;

where type is the type of the variable being pointed to

Example:

int x; // a normal integer variable
int *p; // a pointer to an integer

9

The * is not part of the type!
While C++ allows the * to be placed anywhere between the type and the variable, you

have to be very careful:

char *cptr; // pointer to a char
char* cptr2; // also a pointer to a char

int *ptr1, *ptr2; // Two pointers to ints
int* ptr3, ptr4; // ptr3 is a pointer to an int, ptr4 is an int

Keeping the * next to the variable name helps to keep things straight

10

What happens when we declare a pointer?
Like other variable declarations:

Memory is allocated

The value is uninitialized (random garbage)

Regardless of the type, memory allocated to a pointer is the size of an int

The random garbage may or may not point to a valid memory address

When a program runs, it is given its own isolated memory space. While you
might get segmentation faults by accessing invalid memory locations, you
won't bork your system or break another program.

11

Side tangent: Segmentation fault
A segmentation fault or "segfault" might happen if you:

Try to access memory that doesn't belong to you

Try to write to read-only memory

Try to get the value of unallocated memory

Basically, any time you mess with memory that isn't your own, you might see:

Segmentation fault (core dumped)

"Core dump" is a reference to old-school magnetic memory cores

You can backtrace in gdb to find the offending code

12

Initializing pointers
We can initialize pointers to point to a specific memory address:

int *p = 0x7ffeeb6b4a4c;

But this is pretty much useless

The only useful predefined pointer value is NULL , which is falsy

int *iptr = NULL;
char *cptr = NULL;

In C++ 11, NULL was replaced with nullptr to avoid some ambiguity

13

The & operator
We've already seen the address-of
operator, used for pass-by-reference

Recalling the diagram to the right:
&i evaluates to 000

&j evaluates to 004

&c evaluates to 008

&d evaluates to 012

We now have valid addresses that can be
assigned to pointer variables!

14

Assigning addresses to pointers
Consider the following:

int i = 42;
int *iptr = &i;
iptr = &j;

What just happened??

Let's draw a diagram!

Now add on:

int *iptr2;
iptr2 = iptr;

15

Dereferencing pointers
Okay, we've declared and initialized pointers, but who cares?

What we really want to manipulate is the value at that memory location

The dereference operator * makes this happen

int i = 42;
int *iptr = &i;
cout << *iptr << endl; // prints 42
*iptr = 0;
cout << i << endl; // prints 0

This is the same symbol used in the declaration, but it's a different operator!

& gives the address, * gives the value - kind of like the inverse of each other

16

Some Pointer Gotchas
Dereferencing NULL is undefined behavior

Good idea to check for NULL before dereferencing

if (iptr) { ... }

Beware the precedence and associativity

Most operators are left-to-right, but * is right-to-left

This means that *iptr++ is equivalent to *(iptr++)

This is not the same as (*iptr)++ !

++ on a pointer is valid - it increments the address by the size of the type

17

https://en.cppreference.com/w/cpp/language/operator_precedence

Syntax Soup: exercise
Given the following, fill in the table to the right:

int x = 24;
int *iptr = &x;
char c;
char *cptr = &c;

Expression Type Expression Type

x c

iptr cptr

&x &c

*iptr *cptr

Take a few minutes to try to answer this (in groups or independently), then
we'll go through the solution together

18

Coming up next
Lab tomorrow: pointers tutorial

Lecture: pointers + arrays, functions, and structures

Assignment 2 due Friday, March 1

Midterm: Wednesday, March 6

19

