
COMP 1633: Intro to CS II

File I/O + Arguments
Charlotte Curtis

February 14, 2024

Where we left off
Grouping data with structures

Functions + structures

Arrays + structures

Textbook Chapter 10

Struct Point {
 double x;
 double y;
}

Point p1 = {1.0, 2.0};
Point p2 = {3.0, 4.0};

1

Today's topics
Assignment 1 feedback

File I/O: reading and writing files

Command line arguments

2

Assignment 1
Generally very well done!

Common issues:
Reading user input in main instead of get_range

Casting the result of total_afflicted / N_TRIALS to a double loses

precision

The most common and insidious issue: floating point accumulation error

current_p = p_start + i * p_step;

vs

current_p += p_step;

3

Assignment 2
Due the Friday after reading week

You should have all the necessary tools to complete it after today!

File reading/writing, command line arguments, structures, arrays, functions... all
kinds of fun stuff

Make sure to use C-strings and primitive arrays, not std::string or
std::vector

After this assignment you can use std::string for the next one

4

File I/O
So far we've been abusing cin to read content from files

Input redirection is pretty limited
Only one file at a time

Can't do user input and file input

Solution: file streams!

#include <fstream>
... // int main, using namespace std, etc
ifstream in_file; // input file stream object
ofstream out_file; // output file stream object
in_file.open("some_input.txt"); // open the input for reading
out_file.open("some_output.txt"); // open the output for writing

5

Reading from a file

Python

in_file = open("input.txt", "r")
out_file = open("output.txt", "w")

for line in in_file:
 out_file.write(line)

in_file.close()
out_file.close()

C++

ifstream in_file("input.txt");
ofstream out_file("output.txt");
char line[256];

while (in_file.getline(line, 256)) {
 out_file << line << endl;
}
in_file.close();
out_file.close();

3 steps: Open the file stream, do stuff with it, then close it

Syntax to read/write is the same as cin / cout

6

Reading from a file
Reading from a file is exactly the same as reading from cin

ifstream in_file("time.txt");
char colon;
int hours, minutes;
in_file >> hours >> colon >> minutes;

Writing to a file is exactly the same as writing to cout

ofstream out_file("time.txt");
out_file << hours << ":" << minutes;

You can also use getline , format specifiers, etc

In fact, cin and ifstream both inherit from istream !

7

Side Tangent: while (getline)
You could use eof() , but...

while (!in_file.eof()) {
 in_file.getline(line, 256);
 // do stuff with line
}

Remember eof only triggers after you've tried to read past the end of file! The
loop above is almost certainly a logic error as the last line will be processed twice

getline returns a reference to the stream object (basic_istream &)

If the read failed for whatever reason, NULL is returned and the condition
evaluates as false

8

The fail bit
Consider the following code snippet:

ifstream in_file("input.txt"); // can also declare and then open separately
// do stuff with in_file
in_file.close();

What happens if the file doesn't exist?

The fail bit is set when a read fails - this can be checked with fail()

if (in_file.fail()) {
 cout << "Something went wrong!" << endl;
}

Alternatively, you can use if (!in_file) as a shorthand

9

Command line arguments
Typing in a file name is annoying because you can't use tab completion

Other programs like emacs take arguments, so why can't we?

$ cd some_dir # cd is the command, some_dir is the argument
$./a.out input.txt # ./a.out is the command, input.txt is the argument

This is pretty straightforward: add parameters to main as follows:

int main(int argc, char *argv[]) {
 // argc is the number of arguments
 // argv is an array of strings containing the arguments
}

10

Command line arguments
Command line arguments are mapped 1 to 1 from the command line to main

$./a.out hello world

int main(int argc, char *argv[]) {
 for (int i = 0; i < argc; i++) {
 cout << argv[i] << endl;
 }
}

This means that argv[0] is the name of the program

argc is the number of arguments, including the program name

11

 File I/O check-in 1/2
What is this code snippet doing? Assume the appropriate #include directives are

present - it compiles and runs.

A. Nothing, it's just reading from a file

B. Displaying the contents of a file

C. Copying the contents of a file

D. Removing newlines from a file

ifstream in("input.txt");
ofstream out("output.txt");
const int BUFSIZE = 256;
char line[BUFSIZE];
while (in.getline(line, BUFSIZE)) {
 out << line << endl;
}
in.close();
out.close();

12

 File I/O check-in 2/2
What is forgotten in the following code snippet? Assume the appropriate #include

directives are present - it compiles and runs.

A. Nothing, it's perfect

B. The file isn't closed

C. The file isn't used for anything

D. Should use getline instead of >>

E. The file is opened for writing, not

reading

ifstream in("input.txt");
int x;
while (cin >> x) {
 cout << x << endl;
}
in.close();

13

Command line plus file I/O example
Write a program that takes two command line arguments, an input file and an output

file, and copies the contents of the input file to the output file. It should also replace any
instance of the word "now" with "meow".

If the user does not provide two arguments, or if the files can't be opened, the program
should print an error message and exit.

14

Preview of pointers
Declaring a variable reserves a chunk of memory at some address

A pointer is a variable that stores the address of another variable

We've (kind of) been using pointers already!
void foo(int arr[], int size)

void bar(int &x)

Passing a variable by reference is actually passing a pointer to the variable

Let's check out Python Tutor

15

https://pythontutor.com/render.html#code=%23include%20%3Ciostream%3E%0Ausing%20namespace%20std%3B%0A%0Aint%20main%28%29%20%7B%0A%20%20int%20x%20%3D%2010%3B%0A%20%20int%20*p_x%20%3D%20%26x%3B%0A%20%20%0A%20%20cout%20%3C%3C%20%22x%20before%3A%20%22%20%3C%3C%20x%20%3C%3C%20endl%3B%0A%20%20*p_x%20%3D%205%3B%0A%20%20cout%20%3C%3C%20%22x%20after%3A%20%22%20%3C%3C%20x%20%3C%3C%20endl%3B%0A%20%20%0A%20%20return%200%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

Coming up next
Tomorrow's lab: create a C++ project from scratch, plus file I/O and command line

arguments

Reading week!!!

After that: Pointers - aka where C++ gets really fun

Textbook Chapter 10

16

