
COMP 1633: Intro to CS II

Structures
Charlotte Curtis

February 12, 2024

Where we left off

C-strings: a special kind of array

C-string I/O

C-string functions

Separate compilation

Textbook Section 8.1

const int SIZE = 64;
char sentence[SIZE];

cout << "Enter a sentence: ";
cin.getline(sentence, SIZE);

int i = 0;
int words = 0;
while (sentence[i] != '\0') {
 if (sentence[i] == ' ')
 words++;
}

1

Today's topics
Grouping data with structures

Functions + structures

Arrays + structures

Assignment 2

Textbook Chapter 10

2

But first, some getline confusion
C++ has a function in the <string> header called getline :

getline(istream& is, string& str);

Do not use this - the string class handles all the low-level memory stuff that I
want you to learn about

Instead, use the getline member function of the input stream:

char str[SIZE];
cin.getline(str, SIZE);

3

More clarification: the const modifier
So far we've used const in two places:

Defining a named constant, e.g. const double GST = 0.05

Defining a function parameter as const , e.g.:

int calc_average(const int values[], int n_vals);

Arguments assigned to a const parameter do not need to be const

This simply says that the function cannot modify the array

Similarly, a const int can be assigned to the n_vals parameter, as the value is

copied into the function parameter

4

Separate Compilation
Typical lab structure:

lab.h

lab.cpp - #include "lab.h"

main.cpp - #include "lab.h"

Prevents duplication of the code in lab.h , keeps main logic clear

We could compile in multiple steps:
g++ -c lab.cpp - compiles lab.cpp into lab.o

g++ -c main.cpp - compiles main.cpp into main.o

g++ -o main main.o lab.o - links the two object files

5

What happens when you run make ?
Compiling in multiple steps is annoying, so we dump it in a makefile

This is "Makefile". Notice that comments begin with "#"
program: lab.o main.o
 g++ main.o lab.o –o program
main.o: main.cpp
 g++ -c main.cpp
lab.o: lab.cpp
 g++ -c lab.cpp

Important: the indentation is a tab, not spaces! (emacs knows this)

6

Protecting against multiple #include s
Most projects have many different modules (a somewhat random example)

For example, in assignment 2 (not yet released):
main.cpp includes applicant.h and score.h

score.h includes applicant.h

Problem: #include means "copy and paste" so we're defining stuff twice!

Solution: header guards
Wrap your header file in #ifndef and #endif directives

7

https://github.com/qdore/Mutate/tree/master/src

Header guards

#ifndef APPLICANT_H
#define APPLICANT_H

... // contents of applicant.h

#endif // APPLICANT_H

#ifndef checks if the macro APPLICANT_H is defined

If it is, the preprocessor skips to the #endif

By convention, the macro name is the header file name in all caps

Also conventional to put a comment after the #endif

8

 Separate Compilation check-in 1/2
Which of the following are good reasons to use separate compilation? Select all that

apply.

A. It allows us to reuse code in multiple projects

B. It allows us to separate the main logic from other logical groupings

C. It prevents duplication of code

D. It prevents re-compiling code that hasn't changed

E. It allows us to use make to compile our code

9

 Separate Compilation check-in 2/2
The #include directive is a preprocessor directive that means:

A. Check if a header has already been included, then include it

B. Copy and paste the contents of the header file into the source file

C. Cross-reference to the associated .cpp file

D. Compile the header file into an object file

10

Moving on to structures
Functions with long lists of parameters are painful:

// Calculates the amount owed by the customer based on usage and account limits
void calculate_bill(double base_charge, double usage_limit, double maxMB_used,
 double endMB, double& over_charge, double& penalty_charge,
 double& gst_owed, double& total);

// Displays the final bill. If no surcharges are owing, these are not shown.
void print_bill(int account_number, double usage_limit, double beginMB,
 double maxMB_used, double endMB, double base_charge,
 double over_charge, double penalty_charge, double gst_owed,
 double total);

Wouldn't it be nice if we could bundle all that stuff into a single variable?

11

Structure syntax
General form:

struct <type name> {
 <field1 declaration>;
 <field2 declaration>;
 ...
 <fieldn declaration>;
};

This says "define a new type named <type name> with the given fields

A field (aka member variable or data member) is a term used to describe a
single piece of data associated with a common record

12

A structure for bill calculations

struct BillInfo {
 int account_num;
 double base_charge;
 double usage_limit;
 double maxMB_used;
 ...
 bool valid;
}

This defines a new type called BillInfo with the given fields

This does not declare a variable of type BillInfo !

13

Using your new type
Once you've defined a new type, you can use it to declare variables:

BillInfo user_bill; // a BillInfo instance
BillInfo another_bill; // another BillInfo instance

This is now allocating memory for all the fields in the structure

Common practice:

define structures globally so all functions are aware of the new type

name structures using UpperCamelCase (PascalCase)

14

Accessing structure fields
Like class objects, structure fields can be accessed with dot syntax:

user_bill.account_num = 12345;

user_bill.base_charge = 10.00;

cout << "Account: " << user_bill.account_num << endl;

Once you've accessed via . , fields behave just like normal variables

The fields of a given instance are not related to another instance

Memory for each field is allocated in order

15

Initializing structure fields
You can initialize structure fields at declaration time:

BillInfo user_bill = {12345, 10.00, 1000, 100, true};

But this requires remembering the order of fields and can be error prone

Like arrays, missing values are initialized to a 0 value of their data type

BillInfo user_bill = {};

16

Operations on structures
You can pass structures to functions:

void print_bill(BillInfo bill);

You can return structures from functions:

BillInfo read_and_process();

You can even copy structures:

BillInfo bill1 = {12345, 10.00, 1000, 100, true};
BillInfo bill2 = bill1;
bill2.valid = false; // What happens to bill1.valid?

But you can't compare them with == or !=

17

Structures and functions
Unlike arrays, structures are passed by value by default

You can (and usually should) pass structures by reference:

void read_bill(BillInfo& bill);

What happens in memory with the following function prototype?

void print_bill(BillInfo bill);

Instead of passing by value, good idea to pass by const reference

18

Returning structures from functions
Unlike arrays, structures can be declared in a function and returned

The structure is copied into the caller's memory:

 BillInfo read_and_process() {
 BillInfo bill;
 // read data into bill
 return bill;
 }

 // in main
 BillInfo user_bill = read_and_process();

For small structures this is fine, but for large structures this passing a reference

is more efficient (visualization)

19

https://pythontutor.com/render.html#code=struct%20Point%20%7B%0A%20%20double%20x%3B%0A%20%20double%20y%3B%0A%7D%3B%0A%20%20%0APoint%20init_point%28%29%3B%0A%0Aint%20main%28%29%20%7B%0A%20%20Point%20a%20%3D%20init_point%28%29%3B%0A%20%20Point%20b%20%3D%20init_point%28%29%3B%0A%20%20%0A%20%20return%200%3B%0A%7D%0A%0APoint%20init_point%28%29%20%7B%0A%20%20Point%20pt%3B%0A%20%20pt.x%20%3D%200%3B%0A%20%20pt.y%20%3D%200%3B%0A%20%20return%20pt%3B%0A%7D&cppShowMemAddrs=true&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=cpp_g%2B%2B9.3.0&rawInputLstJSON=%5B%5D&textReferences=false

 Structures vs arrays 1/2
Which of the following is false?

A. Arrays must contain values of the same type

B. Structures must contain values of the same type

C. Arrays are always passed by reference

D. Structures are passed by value by default

E. Array elements must be accessed by index position

20

 Structures vs arrays 2/2
What can you infer from the function prototypes shown?

A. a cannot modify the array

B. b cannot modify the structure

C. Both A and B

D. Neither A nor B

void a(int arr[]);
void b(BillInfo bill);

21

Structures with array fields
Structures can contain arrays (including C-strings) as fields

struct Student {
 char name[64];
 int number;
 double gpa;
};

Oddly, this now allows for whole array operations like copying!

Student a = {"Bob", 12345, 3.5};
Student b = a;
strcpy(b.name, "Alice");

22

Arrays of structures
You can also declare arrays of structures:

BillInfo bills[10];

for (int i = 0; i < 10; i++) {
 read_bill(bills[i]);
}

This allocates memory for all fields of all instances in the array

Standard array rules apply for passing to/returning from functions:

void read_and_process(BillInfo bills[]); // passed by reference
void print_bills(const BillInfo bills[]); // mark as read-only

23

Arrays of structures continued
To access a field of a structure in an array:

First, use indexing to access the element in the array

Then, use dot notation to access the field of the element

For example, to set the i th bill's account number:

bills[i].account_num = 12345;

You can have arrays of structures that have arrays as fields...

Or even arrays of structures that have arrays of structures as fields...

But this is getting a little ridiculous, and probably an indication that your
implementation needs work

24

Coming up next
Lab: Structures

Lecture: File I/O and command line arguments

Assignment 2 now available

25

