
COMP 1633: Intro to CS II

C-Strings
Charlotte Curtis

February 7, 2024

Where we left off
Passing arrays to functions with and

without const

Partially filled arrays

Sorting arrays

Multidimensional arrays

Textbook Chapter 7

int counts[N_LETTERS] = {};
char letter;
cin >> letter;

while (!cin.eof()) {
 if (is_alpha(letter))
 counts[to_index(letter)]++;
 cin >> letter;
}

1

Today's topics
C-strings: a special kind of array

C-string I/O

C-string functions

Separate compilation info

Textbook Section 8.1

2

Multidimensional array passing
Multidimensional arrays are passed by reference just like 1D arrays

An initialization function might have the following prototype:

void initialize(char board[][COLS], int size);

Like 1D arrays, the first dimension is ignored, however...

The second dimension must be specified, and it must be a constant!

This is probably a good place to use a global constant

3

Processing row by row
Depending on the data, you might want to process one row at a time:

const int MAX_RECORDS = 100;
const int NUM_FIELDS = 5;
int records[MAX_RECORDS][NUM_FIELDS] = {};

for (int row = 0; row < MAX_RECORDS; row++) {
 read_record(records[row], NUM_FIELDS);
}

What should the prototype for read_record look like?

How could you process column by column?

4

 ND array check-in 1/2
The following function is intended to initialize a 2D array of integers to all -1. What is

wrong with it?

A. Nothing, should work

B. arr is not passed by reference

C. A size is needed for the second
dimension

D. The loop control variables are not
initialized

E. rows and cols should be const

void initialize(int arr[][],
 int rows,
 int cols) {
 for (int r = 0; r < rows; r++) {
 for (int c = 0; c < cols; c++) {
 arr[r][c] = -1;
 }
 }
}

5

 ND array check-in 2/2
What is the output of the following code?

A. Nothing, compiler error

B. Nothing, runtime error

C. Random garbage

D. The memory address of arr[][0]

E. 0 0 0

const int ROWS = 3;
const int COLS = 3;
int arr[ROWS][COLS] = {};

cout << arr[][0] << endl;

6

C-strings, finally!
C-style strings are arrays of characters

By now you know that this prints out the memory address of the array:

int primes[] = {2, 3, 5, 7, 11};
cout << primes << endl;

But what about this?

char vowels[] = {'a', 'e', 'i', 'o', 'u'};
cout << vowels << endl;

We've actually (almost) been using C-strings all along!

7

The null terminator
Issue: how long should the string be?

We could keep track of a partially filled array size, like this:

char vowels[5] = {'a', 'e', 'i', 'o', 'u'};
int size = 5;

Or, we could use a null terminator:

char vowels[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

The null terminator is a sentinel that marks the end of the string

An array of char s is not a C-string until it has a null terminator

8

C-string shorthand
C++ has a shorthand for initializing C-strings:

char vowels[] = "aeiou";

The null terminator is automatically added

The length is one more than the number of characters

What happens in the following initializations?

char a_ch = 'a';
char a_str[] = "a";
char greeting[32] = "Hello!";
char hello[6] = "Hello!";

9

Some C-string gotchas

Initializing with a string literal is a shorthand - the following are identical:

char message[] = "Hello!";
char message2[] = {'H', 'e', 'l', 'l', 'o', '!', '\0'};

This means that you cannot reassign a C-string, just as you can only use the curly
bracket syntax when initializing an array

You can reassign individual characters:

char message[] = "Hello!";
message[0] = 'G';

Don't forget to allocate enough space for the null terminator!
10

C-string I/O
Output is easy, we've been doing it all semester:

cout << "This is a C-string" << endl;
char message[] = "This is also a C-string";
cout << message << endl;

Input is a bit more complicated:

char name[32]; // need to guess a size!
cout << "Enter your name: ";
cin >> name;

Recall: what does cin do when it encounters whitespace?

11

The getline function
All input streams (such as cin) have a getline member function

cin.getline(buffer, size, [delimiter]); // optional third argument

This reads up to size - 1 characters, or until the is encountered

Default delimiter is the newline character

The "buffer" is just a C-string that you provide

const int MAX_NAME = 32;
char name[MAX_NAME];
cin.getline(name, MAX_NAME);

If you enter more than than size - 1 characters, they'll be left in the buffer!
12

get vs. getline
There's also cin.get(buffer, size, delimiter)

They're almost the same, but get leaves the delimiter character in the buffer and
getline consumes (and discards) it

Both do not ignore leading whitespace (unlike cin >> var)

If you need to skip over whitespace, there are a couple of options:
cin.ignore(n) to ignore the next n characters

cin >> ws to ignore all leading whitespace (my preference)

13

C-Strings plus functions
We can pass C-strings to functions just like any other array

Since a C-string always has a null terminator, we don't need to pass the size

Example: write a function to calculate the length of a string

int len(const char str[]) {
 int length = 0;
 while (str[length] != '\0') {
 length++;
 }
 return length;
}

This is so common that C++ provides a function strlen in <cstring>

14

More <cstring> functions
The <cstring> header provides useful functions for C-strings

Some common ones are:
strlen(str) : returns the length of a C-string

strcpy(dest, src) : copies one C-string to another

strcat(dest, src) : concatenates two C-strings

strcmp(str1, str2) : compares two C-strings

Caution: these functions do not check buffer size! For example, the following has

undefined behaviour and will make your program behave strangely:

char name[4];
strcpy(name, "Charlotte Curtis");

15

https://en.cppreference.com/w/cpp/header/cstring

Example: Hello World the complicated way

Python version

hello = "Hello"
world = "World"

message = hello + " " + world + "!"
print(message)

C++ version

char hello[] = "Hello";
char world[] = "World";

char message[32];
strcpy(message, hello);
strcat(message, " ");
strcat(message, world);
strcat(message, "!");

cout << message << endl;

16

strcmp behaviour
For the function call strcmp(str1, str2) , the return value is:

0 if str1 and str2 are equal (max length does not matter!)

-1 if str1 comes before str2 alphabetically

1 if str1 comes after str2 alphabetically

char fruit[];
cout << "What kind of fruit would you like? ";
cin >> fruit;

if (strcmp("apple", fruit) == 0) {
 cout << "Great choice, you can make pie!" << endl;
}

17

What about the string class?
C++ provides a much more user-friendly string type

You will encounter this in various tutorials, but for now, I want you to learn the pain
of working with C-strings

You will need C-strings and the getline function for Assignment 2

Do not use the string class for Assignment 2!

18

Separate Compilation
Typical lab structure:

lab.h

lab.cpp - #include "lab.h"

main.cpp - #include "lab.h"

Prevents duplication of the code in lab.h , keeps main logic clear

We could compile in multiple steps:
g++ -c lab.cpp - compiles lab.cpp into lab.o

g++ -c main.cpp - compiles main.cpp into main.o

g++ -o main main.o lab.o - links the two object files

19

What happens when you run make ?
Compiling in multiple steps is annoying, so we dump it in a makefile

This is "Makefile". Notice that comments begin with "#"
program: lab.o main.o
 g++ main.o lab.o –o program
main.o: main.cpp
 g++ -c main.cpp
lab.o: lab.cpp
 g++ -c lab.cpp

Important: the indentation is a tab, not spaces! (emacs knows this)

20

Protecting against multiple #include s
Most projects have many different modules (a somewhat random example)

For example, in assignment 2 (not yet released):
main.cpp includes applicant.h and score.h

score.h includes applicant.h

Problem: #include means "copy and paste" so we're defining stuff twice!

Solution: header guards
Wrap your header file in #ifndef and #endif directives

21

https://github.com/qdore/Mutate/tree/master/src

Header guards

#ifndef APPLICANT_H
#define APPLICANT_H

... // contents of applicant.h

#endif // APPLICANT_H

#ifndef checks if the macro APPLICANT_H is defined

If it is, the preprocessor skips to the #endif

By convention, the macro name is the header file name in all caps

Also conventional to put a comment after the #endif

22

 Separate Compilation check-in 1/2
Which of the following are good reasons to use separate compilation? Select all that

apply.

A. It allows us to reuse code in multiple projects

B. It allows us to separate the main logic from other logical groupings

C. It prevents duplication of code

D. It prevents re-compiling code that hasn't changed

E. It allows us to use make to compile our code

23

 Separate Compilation check-in 2/2
The #include directive is a preprocessor directive that means:

A. Check if a header has already been included, then include it

B. Copy and paste the contents of the header file into the source file

C. Cross-reference to the associated .cpp file

D. Compile the header file into an object file

24

Coming up next
Lab: C-strings

Next lecture: Structures

Assignment 1 due TOMORROW!

Assignment 2 available next week: Arrays, C-strings, and structures

Textbook Chapter 10

25

