
COMP 1633: Intro to CS II

More Arrays
Charlotte Curtis

February 5, 2024

Where we left off
Arrays vs Python lists

C-style arrays

Array indexing

Arrays in functions preview

Textbook Chapter 7

int cup_sizes[] = {8, 12, 16, 20};
for (int i = 0; i < 4; i++) {
 cout << cup_sizes[i] << " oz" << endl;
}

1

Today's topics
Passing arrays to functions, with and without const

Partially filled arrays

Sorting arrays

Multidimensional arrays

Preview of C-strings

Textbook Chapter 7, 8.1

2

Passing arrays to functions
Arrays can be passed to functions just like any other variable

double sum_10_elements(double arr[10]) {
 double sum = 0;
 for (int i = 0; i < 10; i++) {
 sum += arr[i];
 }
 return sum;
}

What if we give this an array with 15 elements?

How about 5?

3

Better array passing
For a flexible, reusable function, we need to pass the size of the array as well

Why wouldn't we just use a global constant? Or sizeof ?

What if the function were declared as follows?

double sum_all(double arr[10], int size);

The [10] is ignored, better to just write []

4

Arrays are always passed by reference
We might want to modify an array in a function

void add_one(double arr[], int size) {
 for (int i = 0; i < size; i++) {
 arr[i] += 1;
 }
}

Arrays are always passed by reference, no & needed!
In fact, it's a compiler error to use & with an array

If you only want to read the array, use const

double sum_all(const double arr[], int size);

5

Side tangent: const in function headers

const in a function header means that the function cannot modify the parameter

This does not modify the const -ness of the value that is passed

void print(const int x) {
 cout << "You passed " << x << endl; // no problem
 x = 5; // compiler error, x is const in this scope
}
...
int y = 10;
print(y); // no problem
y = 5; // also no problem

What if I changed it to void print(const int &x) ?

6

Summary of array passing
Any size indicated in the [] of the function header is ignored

The function receives a pointer to the first element of the array
sizeof information is lost

We'll talk more about pointers next week

Pass the size of the array as a separate parameter to have flexible functions

Arrays are always passed by reference, no & needed (or allowed)

If you only want to read the array, use const

7

Returning arrays from functions
What about the following?

double[] get_temps() {
 const int FORECAST_DAYS = 7;
 double high_temps[FORECAST_DAYS] = {};
 for (int i = 0; i < FORECAST_DAYS; i++) {
 cout << "Enter high temp for day "
 << i + 1 << ": ";
 cin >> high_temps[i];
 }
 return high_temps;
}

This is a compiler error! For now, just use the pass-by-reference mechanism

8

 Array check-in 1/2
What is the output from the following code?

A. 0

B. Random garbage

C. The address of the array

D. 4

E. Runtime error

int arr[5] = {};
cout << arr[4] << endl;

9

 Array check-in 2/2
What is the output from the following code?

A. 0

B. Random garbage

C. The address of the array

D. 4

E. Runtime error

int arr[5] = {};
cout << arr << endl;

10

Partially filled arrays

Arrays of fixed-length seem quite limiting, especially coming from Python

high_temps = []
temp = float(input("Enter the next temperature: "))
while temp != -100:
 high_temps.append(temp)
 temp = float(input("Enter the next temperature: "))

A workaround for C-style arrays is to allocate the maximum size you think you
might need, then keep track of the actual size of the array

This is called a partially filled array

11

Partially filled array example

const int MAX_SIZE = 30;
double high_temps[MAX_SIZE] = {};
int num_temps = 0;
double temp = 0;
cout << "Enter the next temperature: ";
cin >> temp;
while (temp != -100 && num_temps < MAX_SIZE) {
 high_temps[num_temps] = temp;
 num_temps++;
 cout << "Enter the next temperature: ";
 cin >> temp;
}

Pretty verbose, but nothing is hidden

The resulting num_temps is the actual size of the array
12

Searching arrays

Searching through an array to find a value is a common task

Example: find the first day with a temperature below 0

int first_freezing_day(const double temps[], int size);

Things to consider:

What should be returned if there are no freezing days?

What should the LCV(s) be?

How does the loop terminate?

13

Sorting arrays
Sorting algorithms are a classic topic in CS

Tons of different algorithms with tradeoffs between speed and memory

We'll look at a simple one called selection sort - not the fastest, but relatively easy
to understand

General algorithm:

Repeat until the array is sorted:
 Go through the array and find the smallest element
 Swap the smallest element with the first element
 Update the start of the array to be the next element

14

https://www.youtube.com/watch?v=BeoCbJPuvSE

Multidimensional arrays

So far we've only looked at one-dimensional arrays

How about a two-dimensional array?

Say we want to represent a tic-tac-toe board

Just like Python's list of lists

board = [['', '', ''],
 ['', '', ''],
 ['', '', '']]

const int ROWS = 3;
const int COLS = 3;
char board[ROWS][COLS] = {};

The first dimension is the rows, the second is the columns

15

Multidimensional data types
Given this declaration:

const int ROWS = 3;
const int COLS = 3;
char board[ROWS][COLS] = {};

What is the type of each of the following?:

1. board

2. board[0]

3. board[0][0]

16

Multidimensional array initialization
We can initialize a multidimensional array just like a 1D array

char board[ROWS][COLS] = {{' ', ' ', ' '},
 {' ', ' ', ' '},
 {' ', ' ', ' '}};

But that gets tedious and is inflexible, a nested loop is probably better:

char board[ROWS][COLS];
for (int row = 0; row < ROWS; row++) {
 for (int col = 0; col < COLS; col++) {
 board[row][col] = ' ';
 }
}

17

Multidimensional array passing
Multidimensional arrays are passed by reference just like 1D arrays

An initialization function might have the following prototype:

void initialize(char board[][COLS], int size);

Like 1D arrays, the first dimension is ignored, however...

The second dimension must be specified, and it must be a constant!

This is probably a good place to use a global constant

18

Processing row by row
Depending on the data, you might want to process one row at a time:

const int MAX_RECORDS = 100;
const int NUM_FIELDS = 5;
int records[MAX_RECORDS][NUM_FIELDS] = {};

for (int row = 0; row < MAX_RECORDS; row++) {
 read_record(records[row], NUM_FIELDS);
}

What should the prototype for read_record look like?

How could you process column by column?

19

C-string Preview
C-style strings are arrays of characters

We said that you can't do this:

int primes[] = {2, 3, 5, 7, 11};
cout << primes << endl;

But what about this?

char vowels[] = {'a', 'e', 'i', 'o', 'u'};
cout << vowels << endl;

We've actually been using C-strings all along!

20

Coming up next
Assignment 1 due Friday

Assignment 2 available next week: repeat of 1701 A4

Lab: Arrays

Next topic: C-strings + structures

Textbook Chapter 8.1, 8.2

21

