
COMP 1633: Intro to CS II

C-Style Arrays
Charlotte Curtis

January 31, 2024

Where we left off
while and for loops in C++

Event controlled vs counted loops

Some useful sentinels

Textbook Sections 3.3-3.4

while (brain_is_working()) {
 keep_programming();
}

1

Today's topics
Arrays vs Python lists

C-style arrays

Array indexing

Arrays in functions preview

Textbook Chapter 7

2

Side note: some handy online resources
Python tutor also does C++!

C++ for Python Programmers is an open source interactive book

Caution: we are doing things the hard low level way, so all mention of
string and vector etc should not be used for now

3

https://pythontutor.com/cpp.html#mode=edit
https://runestone.academy/ns/books/published/cpp4python/index.html?mode=browsing

Python lists

Remember the list type in Python?

cities = ["Calgary", "Vancouver", "Toronto"]
current_temp = [15, 18, 20]

It's possible, but not a good idea, to have mixed data types

city_and_current_temp = ["Calgary", 15]

Arrays in C++ are kind of like lists, but the data types must be the same

We'll start by looking at "C-style" arrays

4

C-style arrays
C-style arrays are a fixed size (length) collection of elements of the same type

When an array is declared, memory is allocated all at once

An array is not a separate data type! The general form of the declaration is:

data_type variable_name[array_size];

For example:

double current_temp[3];

The array size must be a constant (not a variable)

5

Arrays vs Python lists

prices = [1.99, 2.99, 3.99]
print(f"The cost is ${prices[0]}")

double prices[3] = {1.99, 2.99, 3.99};
cout << "The cost is $"
 << prices[0] << endl;

 Both store a sequence of values

 Both can be accessed by index

 Arrays have a fixed size, lists are dynamic

 Arrays can only store one type of value (lists should as well)

 Arrays are not objects, so they don't have methods

 Arrays are stored in contiguous memory

6

Array syntax

datatype array_name[array_size];

array_size must be an unsigned integer constant value!

Declaring an array creates a block of memory to store the values

int numbers[10];

Index 0 1 2 3 4 5 6 7 8 9

Value ? ? ? ? ? ? ? ? ? ?

7

 Uninitialized variables
What is the output from the following code?

A. 0

B. Random garbage

C. -1

D. inf

E. Runtime error

void uninitialized() {
 int x;
 cout << x << endl;
}

8

Array initialization
Arrays can be initialized when they are declared

int numbers[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

However, this is the only time you can do this!

int numbers[10];
numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // no can do

If the number of values in {} is less than array_size , the remaining values are

initialized to zero

int numbers[10] = {1, 2, 3};
// numbers[3] through numbers[9] are 0

9

Inferring size from initialization
If you omit the array size, the compiler will infer it from the initialization

int numbers[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // 10 elements
double other_nums[] = {1.5, 2.5, 3.5}; // 3 elements
double yet_more_nums[] = {}; // 0 elements, kinda pointless
double no_can_do[]; // sorry

This could be convenient, but you probably need to know the size eventually

With C-style arrays, it's up to the programmer to keep track of the size

Good idea to define a named constant for the array size

const int NUM_DAYS = 10;
int numbers[NUM_DAYS];

10

Tangent: sizeof
The sizeof operator returns the size in bytes of a variable or data type

int x = 5;
cout << sizeof(x) << endl; // prints 4

The size of an array is the total size of the allocated memory

int numbers[10];
cout << sizeof(numbers) << endl; // prints 40

This is less useful than you might think

11

Two meanings of []
[] are used to declare an array

[] are also used to index into an array
Indexing gives the value at that index

int numbers[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
cout << numbers[0] << endl; // prints 1
cout << numbers[9] << endl; // prints 10

The data type of the indexed element is the base type of the array:

cout << numbers[0] + numbers[9] << endl; // prints 11

12

Array indexing

Like Python array indices start at 0 and count up

Unlike Python, no negative indices!

Any guesses what will happen here?

int numbers[10];
cout << numbers[0] << endl;
cout << numbers[10] << endl;
cout << numbers[-1] << endl;

13

Array operations
After initialization, you cannot do any "whole array" operations, like:

Assigning one array to another

Comparing two arrays

Printing an array

Reading an array

Returning an array from a function

14

 Take a guess
What do you think will happen here?

A. Compiler error

B. Runtime error

C. Prints 2

D. Prints NULL

E. Prints the memory address of
primes

int primes[] = {2, 3, 5, 7, 11};
cout << primes << endl;

15

Invalid array operations
While many array operations are compile errors, others are logic errors:

int primes[] = {2, 3, 5, 7, 11};
int prime_cpy = primes; // compile time
int prime_cpy[] = primes; // compile time
cin >> primes; // compile time

if (primes == prime_cpy) { // logic!
 cout << "Equal" << endl;
}

So, how do we do any of these things?

16

Arrays + loops =
Array elements need to be processed one at a time

The for loop is a natural fit for this:

int numbers[10];
for (int i = 0; i < 10; i++) {
 numbers[i] = 0;
}

Exercise: write a program that:

Declares and initializes two arrays of equal length

Copies the values from one array to the other

Compares them for equality
17

Preview: arrays + functions
Arrays can be passed to functions as parameters

The parameter type is the same as the declaration

bool are_equal(int a[], int b[]);

int main() {
 const int SIZE = 10;
 int x[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 int y[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 if (are_equal(x, y)) {
 cout << "Equal" << endl;
 }
}

Note that the [] are not passed to the function! [] is part of the type
18

What's missing?
If we're going to copy paste the equality code to the are_equal function, what

additional information do we need to pass?

bool are_equal(int a[], int b[]) {
 bool equalness = true;
 // ... ?
 return equalness;
}

We're going to need the size of the arrays:

bool are_equal(int a[], int b[], int size);

19

Coming up next
Lab: Buffer time, to work out git issues and work on assignment 1

Lecture: more arrays, arrays + functions, multidimensional arrays

Assignment 1: Due February 9, 2024 (Next Friday)

Textbook Chapter 7

20

