COMP 1633: Introto CS I

C- Style Arrays

tttttttttttttt

Where we left off

e while and for loops in C++

e Event controlled vs counted loops while (brain_is working()) {

e Some useful sentinels . keep_programming();

Textbook Sections 3.3-3.4

Today's topics

e Arrays vs Python lists
e C-style arrays
e Array indexing

e Arrays in functions preview

Textbook Chapter 7

Side note: some handy online resources

Python tutor also does C++!

C++ for Python Programmers is an open source interactive book

Caution: we are doing things the hard low level way, so all mention of
string and vector etc should not be used for now

https://pythontutor.com/cpp.html#mode=edit
https://runestone.academy/ns/books/published/cpp4python/index.html?mode=browsing

Python lists

Remember the list type in Python?

cities = ["Calgary", "Vancouver'", "Toronto"]
current_temp = [15, 18, 20]

--

e Arrays in C++ are kind of like lists, but the data types must be the same

We'll start by looking at "C-style" arrays

C-style arrays

e C-style arrays are a fixed size (length) collection of elements of the same type
 When an array is declared, memory is allocated all at once
e An array is not a separate data type! The general form of the declaration is:

data_type variable_name[array_size];

e For example:

double current_temp[3];

e The array size must be a constant (not a variable)

Arrays vs Python lists

' : ' double prices[3] = {1.99, 2.99, 3.99};
{ prices = [1.99, 2.99, 3.99] ! cout <<p"The ([:oit ig $")

print(f"The cost is ${prices[0O]}") << prices[0] << endl;

« / Both store a sequence of values

o / Both can be accessed by index

« X Arrays have a fixed size, lists are dynamic

« X Arrays can only store one type of value (lists should as well)
« X Arrays are not objects, so they don't have methods

X Arrays are stored in contiguous memory

Array syntax

datatype array_name[array_size];

e array_size must be an unsigned integer constant value!

e Declaring an array creates a block of memory to store the values

int numbers[10];

Index | 0(1/2|3/4|5/6|7|8|9

Value | ? |?2 |2 |?2|?2|?2|?2|?2|?]|7

© Uninitialized variables

What is the output from the following code?

A. 0
B. Random garbage void uninitialized() {
c int x;

. -1 cout << X << endl;
D. inf }

E. Runtime error

Array initialization

e Arrays can be initialized when they are declared

int numbers[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

e However, this is the only time you can do this!
int numbers[10];
numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // no can do

e If the number of values in {} islessthan array_size , the remaining values are
Initialized to zero

int numbers[10] = {1, 2, 3};
// numbers[3] through numbers[9] are 0

Inferring size from initialization

If you omit the array size, the compiler will infer it from the initialization

int numbers|[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // 10 elements
double other_nums[] = {1.5, 2.5, 3.5}; // 3 elements

double yet_more_nums[] = {}; // 0 elements, kinda pointless
double no_can_do[]; // sorry

This could be convenient, but you probably need to know the size eventually

With C-style arrays, it's up to the programmer to keep track of the size
e Good idea to define a named constant for the array size

const 1nt NUM_DAYS = 10;
int numbers[NUM_DAYS];

10

Tangent: sizeof

e The sizeof operator returns the size in bytes of a variable or data type

int x = 5;
cout << sizeof(x) << endl; // prints 4

e The size of an array is the total size of the allocated memory

int numbers[10];
cout << sizeof(numbers) << endl; // prints 40

This is less useful than you might think

11

Two meanings of []

e [] are used to declare an array

e [] are also used to index into an array
o Indexing gives the value at that index

int numbers[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
cout << numbers[0] << endl; // prints 1
cout << numbers[9] << endl; // prints 10

e The data type of the indexed element is the base type of the array:

cout << numbers[0] + numbers[9] << endl; // prints 11

12

Array indexing

e Like Python array indices start at O and count up
e Unlike Python, no negative indices!

e Any guesses what will happen here?

int numbers[10];

cout << numbers[0] << endl;
cout << numbers[10] << endl;
cout << numbers[-1] << endl;

13

Array operations

e After initialization, you cannot do any "whole array" operations, like:
o Assigning one array to another

o Comparing two arrays
o Printing an array
o Reading an array

o Returning an array from a function

© Take a guess

What do you think will happen here?

A. Compiler error
B. Runtime error
C. Prints 2

D. Prints NULL

E. Prints the memory address of

primes

int primes|[] = {2, 3, 5, 7, 11},
cout << primes << endl;

15

Invalid array operations

While many array operations are compile errors, others are logic errors:

int primes[] = {2, 3, 5, 7, 11};

int prime_cpy = primes; // complle time
int prime_cpy[] = primes; // complle time
clin >> primes; // complle time

if (primes == prime_cpy) { // logic!
cout << "Equal" << endl;
¥

So, how do we do any of these things?

Arrays + loops = @
Array elements need to be processed one at a time

e The for loop is a natural fit for this:

int numbers[10];

for (int 1 = 0; 1 < 10; i++) {
numbers[i] = 0;

b

o Exercise: write a program that:

o Declares and initializes two arrays of equal length
o Copies the values from one array to the other

o Compares them for equality

Preview: arrays + functions

e Arrays can be passed to functions as parameters
e The parameter type is the same as the declaration

bool are_equal(int a[], int b[]);

int main() {
const int SIZE = 10;
int x[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 1
int y[SIzE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

if (are_equal(x, y)) {
cout << "Equal" << endl;
}

Note that the [] are not passed to the function! [] Is part of the type

18

What's missing?
If we're going to copy paste the equality code to the are_equal function, what

additional information do we need to pass?

bool are_equal(int a[], int b[]) {
bool equalness = true;
/] ?
return equalness;

We're going to need the size of the arrays:

bool are_equal(int a[], int b[], int size);

19

Coming up next

e Lab: Buffer time, to work out git issues and work on assignment 1
e Lecture: more arrays, arrays + functions, multidimensional arrays

e Assignment 1: Due February 9, 2024 (Next Friday)

Textbook Chapter 7

20

