
COMP 1633: Intro to CS II

Loop loop loopy loops
Charlotte Curtis

January 29, 2024

Where we left off
Boolean expressions

if-else statements

Some C++ specific boolean
behaviour

All the git lab chaos

Textbook Sections 2.4, 3.1-3.2

if (x % 3 == 0)
 cout << "Fizz";
if (x % 5 == 0)
 cout << "Buzz";

1

Today's topics
while and for loops

Event controlled vs counted loops

Some useful sentinels

The last lecture of "review", and the last thing needed for assignment 1

Textbook Sections 3.3-3.4

2

Review: Loop design decisions
Think about:

1. What statements do you want to repeat?

2. What variable (the LCV) should control the loop?

3. What condition should cause the loop to terminate? Then, invert it

4. What should the initial conditions of the loop be?

5. How should the LCV be updated?

3

Complete while loop example

int x = 1; // Initialization
while (x <= 100) { // Condition
 if (x % 3 == 0)
 cout << "Fizz";
 if (x % 5 == 0)
 cout << "Buzz";
 cout << "\n";
 x++; // Update
}

Forgetting to update the LCV leads to an infinite loop

Initializing with the wrong value can lead to the loop never executing

Not a complete FizzBuzz implementation - what is this missing? 4

for loops - a bit more different

for i in range(10):
 # code to execute

for (int i = 0; i < 10; i++) {
 // code to execute
}

Notice the semicolons! Inside the parentheses, there are three statements:

i. Initialization

ii. Condition

iii. Update

The LCV is declared inside the loop, and only exists inside the loop

BUT this isn't actually mandatory - it's a good idea though

5

FizzBuzz as a for loop
Since FizzBuzz is counting from 1 to 100, it's a good candidate for a for loop:

for (int x = 1; x <= 100; x++) {
 if (x % 3 == 0)
 cout << "Fizz";
 if (x % 5 == 0)
 cout << "Buzz";
 cout << "\n";
}

for loops help protect you from forgetting to initialize or update the LCV

More readable for counted scenarios, as all 3 steps are in one place

BUT you can't shouldn't use a for loop for event controlled repetition

6

 Review: Compound conditions
Say you want to roll a pair of dice until you get a 12 OR you reach 5 rolls. Which of the

following is the correct condition?

A. roll != 12 || n_rolls < 5

B. roll != 12 && n_rolls < 5

C. roll == 12 || n_rolls >= 5

D. roll == 12 && n_rolls >= 5

E. roll == 12 || n_rolls < 5

int roll = roll_dice();
int n_rolls = 1;

while (<condition>) {
 roll = roll_dice();
 n_rolls++;
}

7

De Morgan's Laws

To determine the loop condition, it's often easier to think of when you want it to

stop rather than when you want it to continue

"Stop when we get a 12 or reach 5 rolls"

"Stop when the user presses q "

Inverting compound conditions can be tricky, but De Morgan's laws can help

!(A && B) == !A || !B

!(A || B) == !A && !B

You can also just use the !(stop condition) syntax if it makes more sense

8

while loops vs for loops

for loops allow you to keep your LCV in the local scope

Otherwise, they're basically the same thing!

int i = 0;
while (i < 10) {
 cout << i << endl;
 i++;
}

for (int i = 0; i < 10; i++) {
 cout << i << endl;
}

You can do some really weird things with for loops (but please don't)

for (; ;) cout << "I'm a loop in one line!" << endl;

9

for loop conventions
You really really should stick to the syntax of:

for (initialization; condition; update) {
 // loop body
}

The initialization is only run once, at the start of the loop

The condition is checked before a new iteration

The update is run at the end of each loop body

C++ is highly flexible, and that power means it's your job to understand
exactly what you want to have happen.

10

Why while ?
If for loops are just syntactic sugar for while loops, why do we have both?

while loops are a good choice for event-controlled loops
You don't know how many times it'll run

The end of the loop is triggered by some kind of an event

This includes sentinel loops

while user provides input
 keep on processing

11

Recall: Sentinel loops

A sentinel is a specific value that is only used to signal the end of the data

The sentinel is typically:

The same data type as the data

Added to the end of a stream of data to indicate the end

Excluded from processing

Example: . at the end of a sentence

Write a function that reads a sentence character by character and counts
the vowels, stopping when it reaches a period.

12

 Remember this pattern?
The loop we just wrote is an example of a sentinel, but it's also an example of which

common loop pattern?

A. Counted loop

B. Accumulator

C. Summation

D. Variable-controlled loop

E. Fruit loop

13

End of input: a useful sentinel
Often we want to keep reading input until the end of file is reached

This is so common that C++ provides a special sentinel for it: eof()

For a given input stream the syntax is stream_name.eof()

 while (!cin.eof()) {
 // read input
 }

This is a member function (aka "method") of the istream class that returns:
true if the end of file has been reached

false otherwise

eof() only return true after an attempt to read past the end of file

14

Example using eof()
Modify the vowel-counting program to use eof() instead of a period as a sentinel.

Why a cat picture? The slide felt kind of empty. 15

More eof() considerations
The internet will tell you that eof() as the loop condition is always bad

This is because of the following (incorrect) code:

while (!cin.eof()) {
 cin >> x;
 // do something with x
}

This code will always repeat the last value of x !

Again, the LCV update should always be at the end of the loop body, necessitating

a priming read before the loop

16

Alternatives to eof()

The >> operator will evaluate to false if it fails to read a value

This means we can put the read inside the while condition:

int x;
cin >> x;
while (!cin.eof()) {
 //do something with x
 cin >> x;
}

int x;
while (cin >> x) {
 //do something with x
}

This is a common pattern for reading input in C++, though it might be more

confusing than using eof()

17

Controversial loop topics
break and continue are statements that interrupt the flow of the loop

break exits the loop immediately

continue skips the rest of the loop body and goes back to the top

In general, these can make the flow of the program harder to follow

For this course, do not use them

Definitely don't use goto . From the textbook:

"Labels are a remnant from the C language and are used with goto
statements. Their use is generally shunned because they can result in
logic that is difficult to follow"

18

Re-writing a loop with break
This is an example of actual code I've had submitted for assignments, often with a

ChatGPT attribution:

int x, y;
while (true) {
 cin >> x >> y;
 if (eof())
 break;
 cout << x + y << endl; // actually more complex, but you get the idea
}

How would you re-write this loop without using break ?

19

Summary of loop types
Counted loops: you know how many times you want to repeat

Prefer a for loop for readability and and less chance of errors

Event-controlled loops: you don't know how many times you want to repeat

Prefer a while loop to signal that the loop is event-controlled

A sentinel is an example of an event-controlled loop

do-while loops: run at least once, but less common than while loops

Avoid break , continue , return in a loop, and goto !

anything that interrupts the flow of control makes things harder to follow

20

Getting fancy: nested loops
Just like if statements, loops can be nested inside each other

This gets a little brain-melty, but is quite useful

Challenge: write a function that takes an integer n and displays the times
table up to

21

Arrays preview

Remember the list type in Python?

cities = ["Calgary", "Vancouver", "Toronto"]
current_temp = [15, 18, 20]

It's possible, but not a good idea, to have mixed data types

city_and_current_temp = ["Calgary", 15]

Arrays in C++ are kind of like lists, but the data types must be the same

We'll start by looking at "C-style" arrays

22

C-style arrays
C-style arrays are a fixed size (length) collection of elements of the same type

When an array is declared, memory is allocated all at once

An array is not a separate data type! The general form of the declaration is:

data_type variable_name[array_size];

For example:

double current_temp[3];

The array size must be a constant (not a variable)

23

Working with arrays
Like Python, arrays can be indexed using [] with the index starting at 0

current_temp[0] = 15;
current_temp[1] = 18;
current_temp[2] = 20;

Also like Python, this provides read/write access to the array element

for (int i = 0; i < 3; i++) {
 cout << "The current temperature is: " << current_temp[i] << endl;
}

Finally, arrays can be initialized when they are declared

double current_temp[3] = {15, 18, 20};

24

Coming up next
Loop lab

Lecture: Arrays

Assignment 1: Due February 9, 2024 (Next Friday)

Textbook Chapter 7

25

