
COMP 1633: Intro to CS II

Booleans and Decisions
Charlotte Curtis

January 24, 2024

Where we left off

Pass by reference

Testing with functions

Intro to decisions

if (boolean_expression) {
 // code to execute if true
} else {
 // code to execute if false
}

1

Today's topics
Boolean expressions

if-else statements

Some C++ specific boolean behaviour

Intro to loops

Textbook Sections 2.4, 3.1-3.2

2

The bool data type
A primitive just like int and double

bool can be declared and initialized like any other primitive

bool thunder_only_happens_when_its_raining = true;

bool can also be returned from a function

bool is_valid_account_number(int account_number);

But often expressions are used directly without assigning to a variable

if (temperature < 0) {
 cout << "It's freezing!\n";
}

3

Reading and printing booleans
bool values can't really be read in or printed out, but they can be implicitly

converted to int values

Caution: there's no loss of precision, so no compiler warning!
false is converted to 0 , true is converted to 1

0 is converted to false , and any other number is true

Safer to read a char and convert to bool explicitly

char c;
cin >> c;
bool is_valid = c == 'y' || c == 'Y';

4

Boolean operators

Python C++ Description

and && Logical and

or || Logical or

not ! Logical not

Same behaviour and precedence as
Python, just different symbols

Like Python, short circuit evaluation

is used

Example: assign a boolean timed_out that is a function of two ints :
total_time and num_records .

timed_out should be true if the time per record exceeds 1 second, and
false otherwise.

5

https://en.cppreference.com/w/cpp/language/operator_precedence

cout and precedence

In Python, print is a function, so the whole expression is evaluated first:

print(x > 0 and x < 10) # prints True or False

In C++, << is an operator:

cout << x > 0 && x < 10; // what happens?

Easiest solution: use parentheses, or assign to a variable:

cout << (x > 0 && x < 10);

6

if syntax

if (boolean_expression) {
 // code to execute if true
} else {
 // code to execute if false
}

Remember the {} defines blacks in C++

boolean_expression can be a compound condition, a function returning a bool ,
a single boolean variable... anything that evaluates to a bool

Caution: sometimes things evaluate to a bool when you didn't expect it!

7

Caution!
= is assignment, ==

is comparison

Unlike Python, this is

not a syntax error

Better to avoid
comparison with bool

8

Single line if statements
If the code to execute is a single line, you can omit the curly braces

if (x > 0)
 cout << "x is positive\n";

Ditto for else :

if (x > 0)
 cout << "x is positive\n";
else
 cout << "x is negative\n";

This can be risky though - remember C++ doesn't care about indentation!

9

Nested if statements
Just like Python, you can nest if statements inside each other:

if (is_valid_account_number(account_number) {
 if (max_disk_usage > allotment) {
 // surcharge calculation
 }
}

Indentation is not required, but it's a good idea

Emacs will indent for you, but if it's not, that could mean you have an error

10

Multiple branching with else if

Python

if x > 0:
 print("x is positive")
elif x < 0:
 print("x is negative")
else:
 print("x is zero")

C++

if (x > 0) {
 cout << "x is positive\n";
} else if (x < 0) {
 cout << "x is negative\n";
} else {
 cout << "x is zero\n";
}

No special elif keyword, just else followed by if

As many else if branches as you like, including zero

11

Tricky mistakes
; after if statement

if (x > 0);
 cout << "x is positive\n";

The "dangling else " problem

if (x > 0)
 if (y > 0)
 cout << "x and y are positive\n";
else
 cout << "x is negative\n";

12

 if statement check-in
In the following code snippet, x has a value of 15. What is the output?

A. Fizz

B. Buzz

C. FizzBuzz

D. Nothing

E. Error

if (x % 3 == 0)
 cout << "Fizz";
if (x % 5 == 0)
 cout << "Buzz";

13

 A trickier one
What is the output of the following code snippet? x is again 15.

A. x is 0

B. x is 0
 Try again

C. Try again

D. Nothing

E. Error

if (x == 0)
 cout << "x is 0\n";
 cout << "Try again\n";

14

Branching in functions
C++ does not restrict you to a single return statement in a function:

double relu(double x) {
 if (x > 0)
 return x;
 else
 return 0;
}

Multiple returns can make code harder to read and debug, though unlike Python,
the compiler will protect you from a forgotten return

My recommendation: stick to a single return , unless it's a "guard clause"
return at the start or the end of the function, not in the middle

15

Tangent: Guard clauses
A "guard clause" is an if statement that returns early if inputs are invalid

bool is_valid_account_number(int account_number) {
 if (account_number < 0) {
 return false;
 }

 // rest of function
}

This can prevent nesting and make code easier to read

Guard clauses should be short and at the very start of the function

16

And now, loops!

while condition:
 # code to execute

while (condition) {
 // code to execute
}

You basically know while loop syntax already! Just remember:

Each loop has at least one loop control variable (LCV)

The LCV must be initialized prior to the loop

The LCV must be updated inside the loop

Eventually the condition must become false to exit the loop

17

Complete while loop example

int x = 1; // Initialization
while (x <= 100) { // Condition
 if (x % 3 == 0)
 cout << "Fizz";
 if (x % 5 == 0)
 cout << "Buzz";
 cout << "\n";
 x++; // Update
}

Forgetting to update the LCV leads to an infinite loop

Initializing with the wrong value can lead to the loop never executing

Not a complete FizzBuzz implementation - what is this missing? 18

for loops - a bit more different

for i in range(10):
 # code to execute

for (int i = 0; i < 10; i++) {
 // code to execute
}

Notice the semicolons! Inside the parentheses, there are three statements:

i. Initialization

ii. Condition

iii. Update

The LCV is declared inside the loop, and only exists inside the loop

BUT this isn't actually mandatory - it's a good idea though

19

FizzBuzz as a for loop
Since FizzBuzz is counting from 1 to 100, it's a good candidate for a for loop:

for (int x = 1; x <= 100; x++) {
 if (x % 3 == 0)
 cout << "Fizz";
 if (x % 5 == 0)
 cout << "Buzz";
 cout << "\n";
}

for loops help protect you from forgetting to initialize or update the LCV

More readable for counted scenarios, as all 3 steps are in one place

BUT you can't shouldn't use a for loop for event controlled repetition

20

Coming up next
Lab: Decisions

Lecture: Loops in more detail, plus new loop constructs and C++ gotchas

Get cracking on assignment 1!

Textbook sections 3.3-3.4

21

