
COMP 1633: Intro to CS II

Pass by reference
Charlotte Curtis

January 22, 2024

Where we left off
Predefined functions in C++

Function calls

Declaring and defining functions

Variable scope

A week of async!

#include <iomanip>
cout.precision(2);
cout << fixed;
cout << "Total: $" << setw(8)
 << bill << endl;
cout << "With GST: $" << setw(8)
 << bill*1.05 << endl;

Textbook Sections 4.1-4.5

1

Today's topics
More on variable scope

Pass by reference

Bottom-up vs top-down testing

Textbook Sections 4.5, 5.1-5.5

2

Variable scope

Python only has two scopes: global and local

C++ has block-level scope

Variables declared inside {} are only accessible inside that block

This applies to functions, but also if statements, for loops, etc.

int global_var = 23; // bad idea, but legal
int main() {
 int local_var = 42; // only accessible within main
 cout << global_var << endl; // 23
 cout << local_var << endl; // 42
}

3

Function parameters are local variables

Parameters are local variables that are initialized with the values of the arguments

Do not redefine function parameters!

Common error in COMP 1701:

def some_function(arg_1: int, arg_2: int) -> int:
 arg_1 = 42
 arg_2 = input("Enter a number: ")
 return arg_1 + arg_2

4

Scope guidelines
Declare variables in the smallest scope possible

Variable names can be repeated in different scopes, but make sure the usage is
consistent

e.g. if temp is used for temperature in one scope, don't use it for temporary
values in another

Similarly if x is an int in one scope, don't use it as a double in another

Avoid global variables altogether (except constants shared across scopes)
Improper use of global variables will affect your grade on assignments

5

 Functions check-in 1/2
Based on the following function prototype (declaration), which of the following is a

valid function call?

double compute_interest(double balance, double rate, int years);

A. int interest = compute_interest(1000, 0.05, 3);

B. compute_interest(1000, 0.05, 0.5);

C. double interest = compute_interest(1000, 0.05, 3);

D. cout << compute_interest() << endl;

6

 Functions check-in 2/2
Predict the output of the following code:

void fun(int x);

int main() {
 int y = 0;
 fun(y);
 cout << y << endl;
}

void fun(int x) {
 x = x + 10;
}

7

Returning multiple things
Functions allow you to return either nothing (void) or one thing (any other type)

Python (sort of) allows you to return multiple values from a function by implicitly
packing them into a tuple:

def get_initial_and_age() -> tuple[str, int]:
 initial = input("Enter your initial: ")
 age = int(input("Enter your age: "))
 return initial, age

How can we do this in C++ (98)?
Objects and data structures, pointers, and references

Note: C++ 11 introduced tuples, and they're probably a better way to do things, but learning about pass by reference is still valuable 8

Pass by value
So far, all of our functions have used pass by value

The value of the argument is assigned to the parameter

Example: given the following function:

void increase_salary(double salary, double percent_increase) {
 salary = salary * (1 + percent_increase);
}

trace the execution of the following code, showing memory locations:

double wage = 10000.0;
increase_salary(wage, 0.05);
cout << wage << endl;

9

Pass by reference
Instead of passing a value, we can pass a reference to a memory location

This allows us to modify the original value, in a different scope!

Use with caution! Side effects can lead to chaos

Syntactically, one tiny change: & after the type in the parameter list

void increase_salary(double& salary, double percent_increase) {
 salary = salary * (1 + percent_increase);
}

The & is called the reference operator

10

Rules and conventions for pass by reference
Only things with an address can be passed to a reference parameter

Variables only, no literals or expressions

Reference parameters can be both read and written
The called function can modify or even destroy the original value!

Style note: functions with reference parameters should usually be void or
return bool (more on that later)

11

Example 1
Write a prototype for a function that will "move" a point in a 2D plane according to an

angle and a distance. Assume the point is represented by two double parameters x
and y .

dis
tan

ce

angle

x

y

12

Example 2
Implement a function with the prototype void swap(int& a, int& b) that exchanges

the values of two int s

Try this on paper for a few minutes, then we'll go through a solution

13

Testing: drivers and stubs
Functions are great because they let us break our code into smaller pieces

Don't wait until you've written everything to test!

Two approaches:
Top-down: Start with the main logic and then fill in the pieces

Bottom-up: Start with the pieces and then put them together

Either way you need to "fake" the parts you haven't written yet

14

 Testing review 1/2
A function with an int parameter num implements the following logic. How many test

values are needed to exhaustively test it?

A. 1

B. 2

C. 3

D. 4

E. Impossible to test exhaustively

result = num
if num < 0
 result = -num

return result

15

 Testing review 2/2
It is acceptable to hard-code magic numbers for test purposes.

A. True

B. False

16

Test Drivers
Used in bottom-up testing

After writing a complete function, a test driver is a "dummy" main function that
calls the function with a variety of test values

At its simplest, the test driver should print the results of the function calls along

with a label for context

cout << "my_func(2) = " << my_func(2) << endl;
cout << "my_func(-2) = " << my_func(-2) << endl;
cout << "my_func(0) = " << my_func(0) << endl;

You can also use assert or a test framework like GoogleTest, but those are
beyond the scope of this course

17

https://google.github.io/googletest/

Function Stubs
While a driver acts as the calling function, a stub acts as the called function

Used in top-down design

Write your main logic first, then write stubs for the functions you need

Stubs match the data type, name, and number of parameters for a function you

want to write, but don't do anything useful

int my_func(int whole_num, double dec) {
 return 0;
}

What value should the stub return? Something that makes sense in the
context of how the function will be used.

18

Side Tangent: input redirection
We talked about testing functions individually with hard-coded values, but

eventually you need to test with input as well

You can repeatedly type your input...

 $./a1
 Enter the range of R0 values (0 - 20): 0.5 12
 Enter the range of p values (0 - 1): 0.1 0.95

But it's easier to redirect input from a file:

 $./a1 < input.txt

This is a bash thing, not a C++ thing - you could do the same with Python
19

Boolean preview
bool is a data type that can only have two values: true or false

Python C++ Description

== == Equal to

!= != Not equal to

< < Less than

<= <= Less than or equal to

> > Greater than

>= >= Greater than or equal to

Functions can return bool , just like in
Python:

def is_even(num: int) -> bool:
 return num % 2 == 0

bool is_even(int num) {
 return num % 2 == 0;
}

20

Compound Boolean expressions

Python C++ Description

and && Logical and

or || Logical or

not ! Logical not

Same behaviour and precedence as Python, just different symbols

Example: bool in_range = x > 0 && x < 10

21

https://en.cppreference.com/w/cpp/language/operator_precedence

if statement syntax

if (boolean_expression) {
 // code to execute if true
} else {
 // code to execute if false
}

note the () around the boolean expression - this is mandatory in C++

Like Python, the else is optional

More nuance on if and booleans next lecture

22

Coming up next
Lab: Pass by reference

Lectures: Decisions and Loops

Assignment 1 now available!

Textbook Sections 2.4, 3.1-3.2

23

Extra: another pass-by-reference example
Write a function called sort2 that takes two int parameters and sorts them in

ascending order - that is, after a call to sort2(m, n) , the smaller value is in m and
the larger value is in n .

Hint: you can use the swap function from earlier

24

