COMP 1633: Intro to CS I

Pass by reference

Charlotte Curtis

Where we left off

Predefined functions in C++

Function calls

Declaring and defining functions

Variable scope

» A week of async!

Textbook Sections 4.1-4.5

#include <iomanip>
cout.precision(2);

cout <<
cout <<
<<

cout <<
<<

fixed;
"Total: $" << setw(8)
bill << endl;

"With GST: $" << setw(8)
bill*1.05 << endl;

Today's topics

e More on variable scope
e Pass by reference

e Bottom-up vs top-down testing

Textbook Sections 4.5, 5.1-5.5

Variable scope

e Python only has two scopes: global and local
e C++ has block-level scope

o Variables declared inside {3} are only accessible inside that block
o This applies to functions, but also if statements, for loops, etc.

int global_var = 23; // bad idea, but legal

int main() {
int local_var = 42; // only accessible within main
cout << global_var << endl; // 23
cout << local_var << endl; // 42

Function parameters are local variables

e Parameters are local variables that are initialized with the values of the arguments

e Do not redefine function parameters!

Common error in COMP 1701

--

+ def some_function(arg_1: int, arg_2: int) -> int:
! arg_1 = 42

arg_2 = input("Enter a number: ") E
' return arg_1 + arg_2

--

Scope guidelines

e Declare variables in the smallest scope possible

e Variable names can be repeated in different scopes, but make sure the usage is
consistent
o e.g.If temp Is used for temperature in one scope, don't use it for temporary
values in another

o Similarly if x Isan int in one scope, don't useitas a double In another

e Avoid global variables altogether (except constants shared across scopes)
o Improper use of global variables will affect your grade on assignments

© Functions check-in 1/2

Based on the following function prototype (declaration), which of the following is a
valid function call?

double compute_interest(double balance, double rate, int years);

A. int interest = compute_interest(1000, 0.05, 3);
B. compute_interest (1000, 0.05, 0.5);
C. double interest = compute_interest(1000, 0.05, 3);

D. cout << compute_interest() << endl;

© Functions check-in 2/2

Predict the output of the following code:

void fun(int x);

int main() {
int y = 0;
fun(y);
cout << y << endl;

}

volid fun(int x) {
X = X + 10;
¥

Returning multiple things

e Functions allow you to return either nothing (void) or one thing (any other type)

e Python (sort of) allows you to return multiple values from a function by implicitly
packing them into a tuple:

def get_initial_and_age() -> tuple[str, 1int]:
initial = input("Enter your initial: ")
age = int(input("Enter your age: "))
return initial, age

 How can we do this in C++ (98)?
o Objects and data structures, pointers, and references

Note: C++ 11 introduced tuples, and they're probably a better way to do things, but learning about pass by reference is still valuable

Pass by value

So far, all of our functions have used pass by value

e The value of the argument is assigned to the parameter
o Example: given the following function:

vold increase_salary(double salary, double percent_increase) {
salary = salary * (1 + percent_increase);
¥

trace the execution of the following code, showing memory locations:

double wage = 10000.0;
increase_salary(wage, 0.05);
cout << wage << endl;

Pass by reference

Instead of passing a value, we can pass a reference to a memory location

This allows us to modify the original value, in a different scope!

Use with caution! Side effects can lead to chaos

Syntactically, one tiny change: & after the type in the parameter list

void increase_salary(double& salary, double percent_increase) {
salary = salary * (1 + percent_increase);
b

The & Is called the reference operator

10

Rules and conventions for pass by reference

e Only things with an address can be passed to a reference parameter
o Variables only, no literals or expressions

e Reference parameters can be both read and written
o The called function can modify or even destroy the original value!

Style note: functions with reference parameters should usually be void or
return bool (more on that later)

11

Example 1

Write a prototype for a function that will "move" a point in a 2D plane according to an
angle and a distance. Assume the point is represented by two double parameters x
and vy .

12

Example 2

Implement a function with the prototype void swap(int& a, int& b) that exchanges
the values of two int s

Try this on paper for a few minutes, then we'll go through a solution

13

Testing: drivers and stubs

e Functions are great because they let us break our code into smaller pieces
e Don't wait until you've written everything to test!

e Two approaches:
o Top-down: Start with the main logic and then fill in the pieces

o Bottom-up: Start with the pieces and then put them together

Either way you need to "fake" the parts you haven't written yet

14

© Testing review 1/2

A function with an int parameter num Implements the following logic. How many test
values are needed to exhaustively test it?

A. 1l
B 2 result = num
if num < 0
C.3 result = -num
D.4 return result

E. Impossible to test exhaustively

15

© Testing review 2/2

It is acceptable to hard-code magic numbers for test purposes.

A. True

B. False

16

Test Drivers

e Used in bottom-up testing

o After writing a complete function, a test driver is a "dummy" main function that
calls the function with a variety of test values

e At its simplest, the test driver should print the results of the function calls along
with a label for context

cout << "my_func(2) = " << my_func(2) << endl;
cout << "my_func(-2) = " << my_func(-2) << endl;
cout << "my_func(0) = " << my_func(0) << endl;

You can also use assert or a test framework like GoogleTest, but those are
beyond the scope of this course

17

https://google.github.io/googletest/

Function Stubs

e While a driver acts as the calling function, a stub acts as the called function
e Used in top-down design
e Write your main logic first, then write stubs for the functions you need

e Stubs match the data type, name, and number of parameters for a function you
want to write, but don't do anything useful

int my_func(int whole_num, double dec) {
return 0;
b

What value should the stub return? Something that makes sense in the

context of how the function will be used. "

Side Tangent: input redirection

e \We talked about testing functions individually with hard-coded values, but
eventually you need to test with input as well

e You can repeatedly type your input...

$./al
Enter the range of RO values (0 - 20): 0.5 12
Enter the range of p values (0 - 1): 0.1 0.95

e But it's easier to redirect input from a file:

$./al < input.txt

This is a bash thing, not a C++ thing - you could do the same with Python

19

Boolean preview

bool is a data type that can only have two values: true or false

Python C++ Description _ _ o
Functions can return bool , just like in

== == FEqualto Python:

1= 1= Not equal to F e s :
+ def is_even(num: int) -> bool:

< < Less than ; return num % 2 == 0

<= <= Less than or equal to _ _

bool 1is_even(int num) {
> > Greater than return num % 2 == @;

ks
>= >= (Greater than or equal to

Compound Boolean expressions

Python C++ Description

and && Logical and
or || Logical or
not ! Logical not

e Same behaviour and precedence as Python, just different symbols

e Example: bool in_range = x > 0 & x < 10

21

https://en.cppreference.com/w/cpp/language/operator_precedence

1f statement syntax

if (boolean_expression) {

// code to execute 1f true
} else {

// code to execute 1f false
}

e note the () around the boolean expression - this is mandatory in C++
e Like Python, the else Is optional

e More nuance on if and booleans next lecture

22

Coming up next

e Lab: Pass by reference
e Lectures: Decisions and Loops

e Assignment 1 now available! %

Textbook Sections 2.4, 3.1-3.2

23

Extra: another pass-by-reference example

Write a function called sort2 that takes two int parameters and sorts them in
ascending order - that is, after a call to sort2(m, n) , the smaller valueisin m and
the larger value isin n .

Hint: you can use the swap function from earlier

24

