
COMP 1633: Intro to CS II

Functions in C++
Charlotte Curtis

January 17, 2024

Where we left off

cout and cin

Debugging with gdb

Constants

Type casting

Basic compiling and arithmetic

#include <iostream>
using namespace std;
#define PI 3.14159

int main() {
 double r;
 cout << "Enter the radius: ";
 cin >> r;
 cout << "The area is " << PI * r * r << endl;
 return 0;
}

1

Today's topics
Predefined functions in C++

Function calls

Declaring and defining functions

Separate compilation (briefly)

Textbook Sections 4.1-4.5

2

Program execution

The requisite main function is the program entry point

Code in main is executed one line at a time from top to bottom

main should be reserved for the program's main logic, with various sub-tasks

delegated to other functions

int main() {
 double a, b;
 cout << "Enter the two side lengths of a right angle triangle: ";
 cin >> a >> b;
 cout << "The hypotenuse length is " << hypoteneuse(a, b) << endl;
 return 0;
}

3

Predefined functions
C++ includes a standard library, such as <iostream>

Caution: Many libraries say C++ 11 or similar, but we are using C++ 98

To use a library, include its header file at the top of your program:

#include <iostream>

Just like Python's import , this now gives access to all the functions in iostream

Remember how you needed to access Python functions with . syntax, such
as random.randint ? C++ is similar, using :: instead of . , and the
using namespace std statement lets you skip the std:: part.

4

https://en.cppreference.com/w/cpp/header

<cmath> functions

Function Description

fabs(x) Absolute value of x

pow(x, y) x to the power of y

sqrt(x) Square root of x

ceil(x) Smallest integer greater than or equal to x

floor(x) Largest integer less than or equal to x

round(x) Nearest integer to x

sin(x) Sine of x (and other trig functions)

Data type of output depends on input! 5

 Review: Calling functions 1/2
Given a function pow(int x, int y) that returns , what output do you think the

following code will produce? Assume the code is part of a complete program.

A. No output

B. 8

C. 9

D. 27

E. Error

int x = 2;
int y = 3;
cout << pow(y, x) << endl;

6

 Review: Calling functions 2/2
Given a function pow(int x, int y) that returns , what output do you think the

following code will produce? Assume the code is part of a complete program.

A. No output

B. 8

C. 9

D. 27

E. Error

int x = 2;
int y = 3;
pow(x, y);
cout << pow << endl;

7

Main takeaway: function calls
General form is similar to Python:

return_val = function_name(argument1, argument2, ...);

Whatever is returned from the function is assigned to return_val

Arguments are passed to the function in the parentheses

Data type and order matters, names do not!

Arguments can be literals, variables, or expressions

8

Example: formatted output

print(f"Total: ${bill:.2f}")
cout.precision(2);
cout << fixed;
cout << "Total: $" << bill << endl;

Calling cout.precision(n) sets the number of decimal places to n

fixed prints a decimal like 308.24
alternatively, scientific prints a decimal like 3.08e+02

These are called format flags

9

https://en.cppreference.com/w/cpp/io/ios_base/fmtflags

Formatting output: field width

print(f"Total: ${bill:8.2f}")
print(f"With GST: ${bill*1.05:8.2f}")

#include <iomanip>
cout.precision(2);
cout << fixed;
cout << "Total: $" << setw(8)
 << bill << endl;
cout << "With GST: $" << setw(8)
 << bill*1.05 << endl;

The iomanip library provides more functions for formatting output

setw(n) sets the field width to n characters

Unlike precision , setw only affects the next output

10

Remember abstraction?
Abstraction lets us hide the implementation from the interface

To call a function, we only need to know:
What values to pass in

What it will return

A general idea of what it does

Similarly, you can write a function without ever knowing how it will be used

This lets us break big problems into smaller ones, and reuse useful bits of code

11

Declaring functions

Just like variables, C++ requires functions to be declared before they are used

This tells the compiler that the function exists and how it behaves

Similar to a function header in Python:

def func_name(args) -> return_type return_type func_name(args);

A function declaration is also called a prototype

All function declarations must be placed before main , and ideally in a separate
header file

12

Defining functions

def func_name(args) -> return_type:
 # function body
 return return_val

return_type func_name(args) {
 // function body
 return return_val;
}

The declaration and function header are almost identical except:

No semicolon after the function header

Variable names are required

13

void functions
What if you don't want to return anything?

def say_hello() -> None:
 print("Hello!")

void say_hello() {
 cout << "Hello!" << endl;
}

void is an explicit return type that means "no return value"

The return statement is optional

Otherwise, just like Python!

Caution: Python's return types are just a suggestion, while in C++ they are
strictly enforced.

14

Complete program example with functions

#include <iostream>
#include <cmath>
using namespace std;

double hypoteneuse(double a, double b); // function declaration

int main() {
 double a, b;
 cout << "Enter the two side lengths of a right angle triangle: ";
 cin >> a >> b;
 cout << "The hypotenuse length is " << hypoteneuse(a, b) << endl;
 return 0
}

double hypoteneuse(double a, double b) { // function definition
 return sqrt(a*a + b*b);
}

15

A brief preview of Separate Compilation
We can separate the main logic from other logical groupings

Problem: main needs to know about the existence of other functions

Solution: put all the declarations in a header file (.h), then #include it

Header files should only contain:

function prototypes

type definitions (e.g. struct s)

named constants

No variables or function definitions should go in header files!

16

Separate Compilation
New project structure:

defs.h

defs.cpp - #include "defs.h"

main.cpp - #include "defs.h"

Prevents duplication of the code in defs.h , keeps main logic clear

Compile in multiple steps:
g++ -c defs.cpp - compiles defs.cpp into defs.o

g++ -c main.cpp - compiles main.cpp into main.o

g++ -o main main.o defs.o - links the two object files

17

make

Compiling in multiple steps is a tedious process, so we automate it with a makefile

This is "Makefile". Notice that comments begin with "#"
program: defs.o main.o
 g++ main.o defs.o –o program
main.o: main.cpp
 g++ -c main.cpp
defs.o: defs.cpp
 g++ -c defs.cpp

Instead of running g++ to compile, run make (with no arguments)

This allows me to do autograded labs! For now, I'll provide makefiles and all you

have to do is run make . You can ignore the contents of the makefile for now.

18

Tangent: Curly brace convention

The curly braces {} are required to define blocks, but indentation is not

The convention is to indent the contents of a block by 4 spaces

Up to you whether the first { is on the same line or the next:

int main() {
 // ...
}

int main()
{
 // ...
}

As usual, be consistent!

19

Refresher: Variable scope
As in Python, variables defined in a function (including parameters) are only accessible

within that function:

int main() {
 int x = 5;
 int y = some_func();
 return 0;
}

int some_func() {
 return x * 2; // Error: x is not defined
}

We'll talk more about scope next lecture
20

Coming up next
Lab: Functions - first lab with actual tests

Lecture: Pass by reference, scope

Textbook 4.5, 5.1-5.2

21

