COMP 1633: Introto CS I

C++ Basics Continued

Charlotte Curtis
January 15, 2024

Where we left off

Predict the data type

Variable declaration and assignment

Primitive data types

5
d
Some new C++ operators d
.
Mixed type arithmetic 7

4

Today's topics

Named Constants

Comments

Input/Output

Type casting

Debugging with gdb

Textbook Sections 2.2, 2.5

A few new operators

Like Python, C++ has the compound assignment operators +=, -=, *=, /=, and
%= . There's a few new ones as well:

e ++ and -- :increment and decrement by 1
o Can be either ++x or x++

e Unary operators: + and -
o Finally you can write x + -5 instead of x - 5!

e ++ and -- happen first, then unary operators, then the usual BEDMAS

A full listing of operator precedence can be found here

http://en.cppreference.com/w/cpp/language/operator_precedence

Constants using const

In Python, constants are just a
convention:

T i const double PI = 3.14159;
 PI = 3.14159 i const double GST = 0.05;

i GST = 0.05 i const int NUM_PLANETS = 8;
E NUM_PLANETS = 8]

In C++, use the keyword const :

e const IS a modifier that prevents the value from being changed

C++ has a number of modifiers that make the compiler enforce rules, turning
run-time or logic errors into compile time errors (a good thing!)

Comments

e C++ has two types of comments:
o Single line comments: // (most common)

o Multi-line comments: /* */
o Be consistent!

e Stylistically, comments should be used the same way as Python
o Explain why you are doing something, not what you are doing

o Use self-documenting variable names and code structure

o Short comments in line with code are okay, but stick to a max of ~80
characters per line total

Displaying output

Assuming #include <iostream> and using namespace std; we can display output
with:
cout << "Hello World!\n";

e cout Isthe standard output stream
o A stream is a source or destination of characters of indefinite length

e << |sthe stream insertion operator

e We're telling C++ to "Insert "Hello World!\n" Into the output stream

Unlike Python, we need to explicitly add \n or endl to get a new line

More output magic

Like Python's print , C++ is happy to mix and match types:

int age = NOT_TELLING;
cout << "I am " << age << " years old.\n";

You can insert as many things in the string as you like, and even break over lines:

cout << "This 1s a very long string that I want to break over "
<< "multiple lines.\n"
<< "This 1s on the next line.\n";

e String literals cannot be broken over lines

e Only one statement means only one semicolon

Reading input
Like the standard output cout , C++ has a standard input cin :

cin >> variable_name;

e >> |s the stream extraction operator
e cin will wait for the user to type something and press enter

e variable_name must be declared, and must match the data type of the input

int age;
cout << "Enter your age 1in years: ",
cin >> age;

The c1n Input stream

Like cout , cin can be used to read multiple values:

char first_initial, last_initial;

int year, age;

cout << "Enter your first and last initials: ",
cin >> first_initial >> last_initial;

cout << "Enter your program year and current age: ";
ciln >> year >> age;

cout << "Thanks, " << first_initial << last_initial
<< "I You were " << (age - year) << " when you started!\n";

© Check-in 1/2

True or false:

Like Python, C++ will include a prompt for the user when requesting input.

A. True

B. False

10

© Check-in 2/2

True or false:

Multiple inputs can be separated by whitespace.

A. True

B. False

11

Buffered input

Typed input is read and stored in a buffer (temporary storage)

This allows the user to backspace and make corrections before submitting
e cin follows (approximately) this process:

1f the buffer 1s empty
read from the keyboard
else
process next value in the buffer

The data type of the variable to the right of >> determines how the input is
Interpreted

12

Type-dependent input processing

Data Type Input Processing

int Read all characters until a non-digit is found

double Read all characters until a non-digit or non-decimal is found*
char Read the next character

e For all data types, leading whitespace is ignored and multiple whitespace
characters are treated as a single delimiter

e Important: the last character (often \n) is left in the buffer

* Or scientific notation, e.g. 2.99e8

13

Type casting

Mixed type arithmetic can result in implicit type casting:

int 1 = 1;
double d = (1 + 1) * 3.4; // ok
d =1; // still okay
1 =4d; // compiler warning!
e Best to be explicit with static_cast :

i = static_cast<int>(d);

e General syntax: static_cast<type>(expression)

© Type casting check-in

In the following code sample, what is the final value of pi_i ?

A.O

B.1 double pi = 3.14159;

C 2 int pi_i = static_cast<int>(pi / 2),
D. 3

15

Limitations of double

e Declaring a double allocates 8 bytes or 64 bits of memory (32 bit float shown

below):

sign exponent (8 bits) fraction (23 bits)
| | Il I

olo|1|1|1]|2|1|0|0]lof1|0|0|0|0O|O|O|0O|O|O[O|O|O|O|0O|O|O|O|O|0O|0O|O] = 0.15625
31 éO 21.3 2.2 (bit index) (.)

o Allows for numbers up to 1.8 x 103%, but "only" 15-17 digits of precision

e Doubles are inexact: 3 * 0.1 == 0.3 may evaluate to false !

Image from https://en.wikipedia.org/wiki/IEEE_754

16

https://en.wikipedia.org/wiki/IEEE_754

Limitations of i1int

Declaring an int allocates 4 bytes or 32 bits of memory
This allows for storing numbers up to 23! — 1 or 2, 147, 483, 647

Why not 23272

Integers are exact, so can be safely used for equality comparisons
e BUT if you exceed the maximum value, you get integer overflow:
int 1 = 2147483647;

1 =1+ 1;
cout << 1 << endl; // -2147483648

17

Debugging with gdb

e In tomorrow's lab, you will be introduced to the GNU Debugger gdb

e gdb Iis a command-line tool that allows you to:
o Run your program line-by-line

o Inspect the values of variables
o Set breakpoints to pause execution
o And much more!
e To build with debug info (such as line numbers) use the -g flag:

g++ -g hello.cpp

18

gdb demo

e After building with -g , run gdb on the executable:

gdb ./a.out

You will see a (gdb) prompt

e Type run to start the program - this will run the whole thing

Type list to see the source code

To add a breakpoint, type b <line number> (or break <line number>), e.g.:
b 7

e Now run again, and the program will pause at line 7

19

Basic gdb commands

Command
run
list
b <line number>
d <breakpoint number>
n
p <variable name>

C

Description
Run the program
List the source code
Set a breakpoint at the given line number
Delete the given breakpoint
Execute the next line of code
Print the value of the given variable

Continue execution until the next breakpoint

20

Coming up next

e Lab: C++ and gdb

e Lecture: Using and defining functions in C++

Textbook Chapter 4 and start of 5

21

