
COMP 1633: Intro to CS II

C++ Basics Continued
Charlotte Curtis

January 15, 2024

Where we left off

Variable declaration and assignment

Primitive data types

Some new C++ operators

Mixed type arithmetic

Predict the data type

5 + i * 2
d + i * 2
d / 9.33
7 / i
7.0 / i
42 + 7 / (i * 1.2)

1

Today's topics
Named Constants

Comments

Input/Output

Type casting

Debugging with gdb

Textbook Sections 2.2, 2.5

2

A few new operators
Like Python, C++ has the compound assignment operators += , -= , *= , /= , and
%= . There's a few new ones as well:

++ and -- : increment and decrement by 1

Can be either ++x or x++

Unary operators: + and -

Finally you can write x + -5 instead of x - 5 !

++ and -- happen first, then unary operators, then the usual BEDMAS

A full listing of operator precedence can be found here 3

http://en.cppreference.com/w/cpp/language/operator_precedence

Constants using const
In Python, constants are just a

convention:

PI = 3.14159
GST = 0.05
NUM_PLANETS = 8

In C++, use the keyword const :

const double PI = 3.14159;
const double GST = 0.05;
const int NUM_PLANETS = 8;

const is a modifier that prevents the value from being changed

C++ has a number of modifiers that make the compiler enforce rules, turning
run-time or logic errors into compile time errors (a good thing!)

4

Comments
C++ has two types of comments:

Single line comments: // (most common)

Multi-line comments: /* */

Be consistent!

Stylistically, comments should be used the same way as Python
Explain why you are doing something, not what you are doing

Use self-documenting variable names and code structure

Short comments in line with code are okay, but stick to a max of ~80
characters per line total

5

Displaying output
Assuming #include <iostream> and using namespace std; we can display output

with:

cout << "Hello World!\n";

cout is the standard output stream
A stream is a source or destination of characters of indefinite length

<< is the stream insertion operator

We're telling C++ to "insert "Hello World!\n" into the output stream

Unlike Python, we need to explicitly add \n or endl to get a new line

6

More output magic
Like Python's print , C++ is happy to mix and match types:

int age = NOT_TELLING;
cout << "I am " << age << " years old.\n";

You can insert as many things in the string as you like, and even break over lines:

cout << "This is a very long string that I want to break over "
 << "multiple lines.\n"
 << "This is on the next line.\n";

String literals cannot be broken over lines

Only one statement means only one semicolon

7

Reading input
Like the standard output cout , C++ has a standard input cin :

cin >> variable_name;

>> is the stream extraction operator

cin will wait for the user to type something and press enter

variable_name must be declared, and must match the data type of the input

int age;
cout << "Enter your age in years: ";
cin >> age;

8

The cin input stream
Like cout , cin can be used to read multiple values:

char first_initial, last_initial;
int year, age;
cout << "Enter your first and last initials: ";
cin >> first_initial >> last_initial;

cout << "Enter your program year and current age: ";
cin >> year >> age;

cout << "Thanks, " << first_initial << last_initial
 << "! You were " << (age - year) << " when you started!\n";

9

 Check-in 1/2
True or false:

Like Python, C++ will include a prompt for the user when requesting input.

A. True

B. False

10

 Check-in 2/2
True or false:

Multiple inputs can be separated by whitespace.

A. True

B. False

11

Buffered input
Typed input is read and stored in a buffer (temporary storage)

This allows the user to backspace and make corrections before submitting

cin follows (approximately) this process:

if the buffer is empty
 read from the keyboard
else
 process next value in the buffer

The data type of the variable to the right of >> determines how the input is

interpreted

12

Type-dependent input processing

Data Type Input Processing

int Read all characters until a non-digit is found

double Read all characters until a non-digit or non-decimal is found*

char Read the next character

For all data types, leading whitespace is ignored and multiple whitespace

characters are treated as a single delimiter

Important: the last character (often \n) is left in the buffer

* Or scientific notation, e.g. 2.99e8 13

Type casting
Mixed type arithmetic can result in implicit type casting:

int i = 1;
double d = (1 + i) * 3.4; // ok
d = i; // still okay
i = d; // compiler warning!

Best to be explicit with static_cast :

i = static_cast<int>(d);

General syntax: static_cast<type>(expression)

14

 Type casting check-in
In the following code sample, what is the final value of pi_i ?

A. 0

B. 1

C. 2

D. 3

double pi = 3.14159;
int pi_i = static_cast<int>(pi / 2);

15

Limitations of double

Declaring a double allocates 8 bytes or 64 bits of memory (32 bit float shown

below):

0 0 1 1 1 1 1 0 0 0 1 0

sign exponent (8 bits) fraction (23 bits)

31 30 23 22 0(bit index)

= 0.15625

Allows for numbers up to , but "only" 15-17 digits of precision

Doubles are inexact: 3 * 0.1 == 0.3 may evaluate to false !

Image from https://en.wikipedia.org/wiki/IEEE_754 16

https://en.wikipedia.org/wiki/IEEE_754

Limitations of int
Declaring an int allocates 4 bytes or 32 bits of memory

This allows for storing numbers up to or

Why not ?

Integers are exact, so can be safely used for equality comparisons

BUT if you exceed the maximum value, you get integer overflow:

int i = 2147483647;
i = i + 1;
cout << i << endl; // -2147483648

17

Debugging with gdb
In tomorrow's lab, you will be introduced to the GNU Debugger gdb

gdb is a command-line tool that allows you to:
Run your program line-by-line

Inspect the values of variables

Set breakpoints to pause execution

And much more!

To build with debug info (such as line numbers) use the -g flag:

g++ -g hello.cpp

18

gdb demo
After building with -g , run gdb on the executable:

gdb ./a.out

You will see a (gdb) prompt

Type run to start the program - this will run the whole thing

Type list to see the source code

To add a breakpoint, type b <line number> (or break <line number>), e.g.:

b 7

Now run again, and the program will pause at line 7

19

Basic gdb commands

Command Description

run Run the program

list List the source code

b <line number> Set a breakpoint at the given line number

d <breakpoint number> Delete the given breakpoint

n Execute the next line of code

p <variable name> Print the value of the given variable

c Continue execution until the next breakpoint

20

Coming up next
Lab: C++ and gdb

Lecture: Using and defining functions in C++

Textbook Chapter 4 and start of 5

21

