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Where we left off

Predict the data type

Variable declaration and assignment

Primitive data types
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d
Some new C++ operators d
.
Mixed type arithmetic 7
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Today's topics

Named Constants

Comments

Input/Output

Type casting

Debugging with gdb

Textbook Sections 2.2, 2.5



A few new operators

Like Python, C++ has the compound assignment operators +=, -=, *=, /=, and
%= . There's a few new ones as well:

e ++ and -- :increment and decrement by 1
o Can be either ++x or x++

e Unary operators: + and -
o Finally you can write x + -5 instead of x - 5!

e ++ and -- happen first, then unary operators, then the usual BEDMAS

A full listing of operator precedence can be found here


http://en.cppreference.com/w/cpp/language/operator_precedence

Constants using const

In Python, constants are just a
convention:

T i const double PI = 3.14159;
 PI = 3.14159 i const double GST = 0.05;

i GST = 0.05 i const int NUM_PLANETS = 8;
E NUM_PLANETS = 8 ]

-------------------------------------------------------------

In C++, use the keyword const :

e const IS a modifier that prevents the value from being changed

C++ has a number of modifiers that make the compiler enforce rules, turning
run-time or logic errors into compile time errors (a good thing!)



Comments

e C++ has two types of comments:
o Single line comments: // (most common)

o Multi-line comments: /* */
o Be consistent!

e Stylistically, comments should be used the same way as Python
o Explain why you are doing something, not what you are doing

o Use self-documenting variable names and code structure

o Short comments in line with code are okay, but stick to a max of ~80
characters per line total



Displaying output

Assuming #include <iostream> and using namespace std; we can display output
with:
cout << "Hello World!\n";

e cout Isthe standard output stream
o A stream is a source or destination of characters of indefinite length

e << |sthe stream insertion operator

e We're telling C++ to "Insert "Hello World!\n" Into the output stream

Unlike Python, we need to explicitly add \n or endl to get a new line



More output magic

Like Python's print , C++ is happy to mix and match types:

int age = NOT_TELLING;
cout << "I am " << age << " years old.\n";

You can insert as many things in the string as you like, and even break over lines:

cout << "This 1s a very long string that I want to break over "
<< "multiple lines.\n"
<< "This 1s on the next line.\n";

e String literals cannot be broken over lines

e Only one statement means only one semicolon



Reading input
Like the standard output cout , C++ has a standard input cin :

cin >> variable_name;

e >> |s the stream extraction operator
e cin will wait for the user to type something and press enter

e variable_name must be declared, and must match the data type of the input

int age;
cout << "Enter your age 1in years: ",
cin >> age;



The c1n Input stream

Like cout , cin can be used to read multiple values:

char first_initial, last_initial;

int year, age;

cout << "Enter your first and last initials: ",
cin >> first_initial >> last_initial;

cout << "Enter your program year and current age: ";
ciln >> year >> age;

cout << "Thanks, " << first_initial << last_initial
<< "I You were " << (age - year) << " when you started!\n";



© Check-in 1/2

True or false:

Like Python, C++ will include a prompt for the user when requesting input.

A. True

B. False
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© Check-in 2/2

True or false:

Multiple inputs can be separated by whitespace.

A. True

B. False
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Buffered input

Typed input is read and stored in a buffer (temporary storage)

This allows the user to backspace and make corrections before submitting
e cin follows (approximately) this process:

1f the buffer 1s empty
read from the keyboard
else
process next value in the buffer

The data type of the variable to the right of >> determines how the input is
Interpreted
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Type-dependent input processing

Data Type Input Processing

int Read all characters until a non-digit is found

double Read all characters until a non-digit or non-decimal is found*
char Read the next character

e For all data types, leading whitespace is ignored and multiple whitespace
characters are treated as a single delimiter

e Important: the last character (often \n ) is left in the buffer

* Or scientific notation, e.g. 2.99e8
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Type casting

Mixed type arithmetic can result in implicit type casting:

int 1 = 1;
double d = (1 + 1) * 3.4; // ok
d =1; // still okay
1 =4d; // compiler warning!
e Best to be explicit with static_cast :

i = static_cast<int>(d);

e General syntax: static_cast<type>(expression)



© Type casting check-in

In the following code sample, what is the final value of pi_i ?

A.O

B.1 double pi = 3.14159;

C 2 int pi_i = static_cast<int>(pi / 2),
D. 3
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Limitations of double

e Declaring a double allocates 8 bytes or 64 bits of memory (32 bit float shown

below):

sign exponent (8 bits) fraction (23 bits)
| | Il I

olo|1|1|1]|2|1|0|0]lof1|0|0|0|0O|O|O|0O|O|O[O|O|O|O|0O|O|O|O|O|0O|0O|O] = 0.15625
31 éO 21.3 2.2 (bit index) (.)

o Allows for numbers up to 1.8 x 103%, but "only" 15-17 digits of precision

e Doubles are inexact: 3 * 0.1 == 0.3 may evaluate to false !

Image from https://en.wikipedia.org/wiki/IEEE_754
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https://en.wikipedia.org/wiki/IEEE_754

Limitations of i1int

Declaring an int allocates 4 bytes or 32 bits of memory
This allows for storing numbers up to 23! — 1 or 2, 147, 483, 647

Why not 23272

Integers are exact, so can be safely used for equality comparisons
e BUT if you exceed the maximum value, you get integer overflow:
int 1 = 2147483647;

1 =1+ 1;
cout << 1 << endl; // -2147483648
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Debugging with gdb

e In tomorrow's lab, you will be introduced to the GNU Debugger gdb

e gdb Iis a command-line tool that allows you to:
o Run your program line-by-line

o Inspect the values of variables
o Set breakpoints to pause execution
o And much more!
e To build with debug info (such as line numbers) use the -g flag:

g++ -g hello.cpp
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gdb demo

e After building with -g , run gdb on the executable:

gdb ./a.out

You will see a (gdb) prompt

e Type run to start the program - this will run the whole thing

Type list to see the source code

To add a breakpoint, type b <line number> (or break <line number> ), e.g.:
b 7

e Now run again, and the program will pause at line 7
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Basic gdb commands

Command
run
list
b <line number>
d <breakpoint number>
n
p <variable name>

C

Description
Run the program
List the source code
Set a breakpoint at the given line number
Delete the given breakpoint
Execute the next line of code
Print the value of the given variable

Continue execution until the next breakpoint
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Coming up next

e Lab: C++ and gdb

e Lecture: Using and defining functions in C++

Textbook Chapter 4 and start of 5
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