
COMP 1633: Intro to CS II

Basics of C++
Charlotte Curtis

January 10, 2024

Where we left off

Course outline, policies, etc

Hello world

Tracing without explanation

Git + CLI adventures

int main() {
 int x = 0;
 int z = 0;
 while (x < 5) {
 z += x * x;
 ++x;
 }
 cout << z << '\n';
 return 0;
}

1

Today's topics
C++ program basics

Format and layout

Compiling vs interpreting

Simple output

Variables and data types

Textbook Sections 1.3, 2.1-2.3

2

A C++ Program
Every C++ program has exactly one "main" function

int main() {
 // execution begins here
 ...
 return 0; // ends here
}

Unlike Python, C++ will not run without a main function!

3

Python vs C++

def main() -> None:
 print("Hello World!")

int main() {
 cout << "Hello World!\n";
 return 0;
}

Key points:

Indentation is only for readability, with grouping indicated by braces {}

Return type comes before function name (and is required)

Statements are terminated with a semicolon ;

4

 Recall: statements vs expressions
Which of the following are true about statements? Select all that apply.

A. Can contain expressions.

B. Are instructions to the computer to do something.

C. Can be assigned to a variable.

D. Can include function calls

E. Can be nested.

5

 Recall: statements vs expressions
Which of the following are true about expressions? Select all that apply.

A. Can contain expressions.

B. Are instructions to the computer to do something.

C. Can be assigned to a variable.

D. Can include function calls

E. Can be nested.

6

Compiling vs Interpreting
All computers only understand machine code, a sequence of 0s and 1s

Compiling is when C++ is translated to a binary executable

Interpreting is when Python is translated to machine code line-by-line

Compiled code does not need the interpreter to run, and is often faster

Interpreted code can be easier to debug

7

The g++ Compiler

.cpp a.out

g++

g++ is the GNU C++ compiler

We feed our source code .cpp file into the compiler, and it spits out an
executable (by default named a.out)

To change the output name, specify -o flag, for example:
g++ hello.cpp -o hello

8

Recall: error types
Syntax, runtime, and logic errors

def abs_val(some_var: int) -> int:
 if some_var < 0:
 soem_var = 0

 return some_var

int abs_val(int some_var) {
 if (some_var < 0) {
 soem_var = 0;
 }

 return some_var;
}

The compiler is your friend! Compile-time errors are the easiest to fix.

9

Simple Output
While Python provides a lot of built-in functions, C++ is more modular

To enable output, we need the following:
#include <iostream>

using namespace std;

Then we can use cout to print to the terminal

cout << "Hello World!\n";

Note that C++ does not include a newline by default

10

Side Tangent: Preprocessor directives and
namespaces

Lines beginning with # are preprocessor directives

The preprocessor is a program that runs before the compiler

#include tells the compiler that the named file should be included

Preprocessor directives are not statements, and do not end with a semicolon!

using namespace std; is a C++ statement

Optionally, you could omit this line and write std::cout every time

11

Variables and Types
At a high level, variables in C++ and Python are similar.

Both allow you to refer to a value by a convenient name

Both can only store one thing at a time, with a new value replacing the old

Python

x = 5 # int
x = "Meep" # str

C++

int x = 5;
x = "Meep"; // error!

In C++ variables must be declared with a type

The type cannot change!

12

Variable definition in Python
Internally, there's a whole Rube Goldberg-esque process happening when you write x

= 5 in Python. You end up with:

namespaces

objects

references

memory allocation

Python's ease of use means a lot is hidden from the programmer!

If you're interested in diving down the CPython implementation rabbit hole, this is a pretty good start. 13

https://tenthousandmeters.com/blog/python-behind-the-scenes-5-how-variables-are-implemented-in-cpython/

Variable declaration and initialization in C++
It looks similar to Python, but we need to be explicit about the type:

int x = 5;
x = "Hello world!"; // error, x can only be an int!

Declaration and initialization can also be separated

int x; // declaration
x = 5; // initialization
int x; // error! We already declared that x was an int

Beware the uninitialized variable!

14

Separate or combined?
From the compiler's perspective, there is no difference for primitive types

My preference: declare and initialize on the same line
Less risk of uninitialized variables

Define variables when they are needed

C requires all declarations at the top of a function, so you may prefer this

Multiple variables can be declared on one line, but this can be confusing

int x, y, z;
int a, b = 5, c; // Madness! Please don't do this.

We'll revisit this idea when we discuss reading input

15

Variable naming
More or less the same restrictions as Python:

Must start with a letter or underscore

Can contain letters, numbers, and underscores

Cannot be a reserved word (e.g. int , double , return)

Case sensitive

Convention is either snake_case or camelCase , just be consistent

16

Primitive Data Types

Python C++ Size

int int 4 bytes

float double 8 bytes

bool bool 1 byte

None void , NULL (ish)

str

char 1 byte

C++ has true primitive data types

Declaring an int reserves just 4
bytes of memory

float exists, but is rarely used

void and NULL are special types
that we'll discuss later

17

str vs char
In Python, str is a sequence of characters

No difference between 'a' , "a" , 'abc' , or ' '

In C++, char is a single character, or 1 byte integer
'a' is a char , but "a" means something entirely different

A string literal behaves the same way as in Python

cout << "Hello, world!\n";

... but you can't declare and manipulate them the same way

cout << "Hello, " + "world!\n"; // error!

We'll talk about strings more depth later, for now we'll stick to string literals 18

 What do you think will happen?
This code compiles and runs. Predict the output from the choices below:

A. 97

B. aa

C. 194

D. 2a

E. 2 * a

int main() {
 char a = 'a';
 cout << 2 * a << '\n';
 return 0;
}

19

The assignment operator
Much like in Python, the = operator assigns the value of the expression on the right

hand side to the variable on the left hand side:

int x = 5;
int y = x + 1;
x = x - 1;
y = 5 / 2;

What's going on with that 5 / 2 ?

20

Arithmetic operators

Python C++ Description

+ + Addition

- - Subtraction

* * Multiplication

/ / Division

// / Integer division

% % Modulo (only for int)

** Exponentiation

Order of operations follows BEDMAS
(just like Python)

Operation depends on the data types

of the operands and the variable

21

Arithmetic with mixed data types
If both operands are int , the expression evaluates to int

If at least one operand is double , the expression evaluates to double

If a double is assigned to an int variable, it is truncated to an int (with an
associated compiler warning)

If an int is assigned to a double , it is promoted to a double

22

Practice!
For each of the following expressions, specify the data type of the result given i is

an int and d is a double :

5 + i * 2
d + i * 2
d / 9.33
7 / i
7.0 / i
42 + 7 / (i * 1.2)

In the end, the result is cast to the variable type, but there may be
intermediate loss of precisions as in double y = 5 / 2

23

A few new operators
Like Python, C++ has the compound assignment operators += , -= , *= , /= , and
%= . There's a few new ones as well:

++ and -- : increment and decrement by 1

Can be either ++x or x++

Unary operators: + and -

Finally you can write x + -5 instead of x - 5 !

++ and -- happen first, then unary operators, then the usual BEDMAS

A full listing of operator precedence can be found here 24

http://en.cppreference.com/w/cpp/language/operator_precedence

Coming up next
Lab: Hello world

Lecture: Continuing with C++ basics

Textbook Sections 2.4-2.5

25

